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1. We will call a complex-valued function on the half-line :>0
locally integrable if it is integrable on each interval [0, T], T'>0.
Let £ be the ring of locally integrable functions (functions which are
equal up to a set of measure zero will be identified with each other)
with the usual pointwise addition, and with convolution for the prod-
uct operation. Thus kx=r if and only if [$k(t—u)x(u)du=r(¢) for al-
most every t>0. Give £ the topology defined by the seminorms
|||z = J3 | x|(u)du, T>0. Thus a sequence x., #=1,2, - - - in £ con-
verges to 0 in &£ if and only if x,—0 in L[0, T'] for each T>0 as n— .
The equation kx =7 is an important integral equation; however, solu-
tions and the existence of solutions are in general difficult to obtain.
M. 1. Fenys and C. Foias [1]' have shown that if % and 7 are in £
and if % vanishes on no neighborhood of the origin (i.e. ||%||z>0 for
each T>0) there is always an approximate solution to the equation

1 The author thanks the referee for calling this article to his attention.
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kx=r in the sense that if 77>0 and €>0 are given there is an x in
L[0, T] such that ||7—kx||r <e. We shall give a new proof of this
result which enables one to see how such approximate solutions can
be constructed, when k& is a real function, in terms of the character-
istic functions of a completely continuous self-adjoint operator on a
Hilbert space.

2. Each element % in £ defines a continuous linear transformation
of £ into &£, and of L?[0, T'] into L?[0, T'] (for each T>0,1<p < =)
by the formula K(x) =kx. Let K be the transformation defined by
the complex conjugate % of k, and denote by .S the transformation of
L»[0, T] into L?[0, T'] which is defined by S(x)(t) =x(T —¢) for all ¢
in [0, T]. If K is considered as an operator on the space L[0, T] it is
easy to verify that the adjoint transformation of K is K*=SKS. By
a well-known theorem of Titchmarsh if 2 does not vanish on a neigh-
borhood of the origin then K(x) =0 in L[0, T] if and only if x is the
zero element of L[0, T]; thus the null space of K*=SKS consists of
the zero element alone and the range of K is dense in L[0, T].

We will call a sequence x,, =1, 2, - - -+, in £ an approximate
solution to the equation kx=r if kx,—r in £ as n— . We have
proved the following theorem.

TueoreM (Foiasg). If k in £ vanishes on no neighborhood of the
origin and r 1s in £ there is an approximate solution in £ to the equa-
tion kx=r.

3. Henceforth we shall consider k to be real and to vanish on no
neighborhood of the origin.? In order to construct approximate solu-
tions we consider K and S as operators on the Hilbert space L2[0, T].
The operator KS is self-adjoint since (K.S)*=S*K*=S(SK.S)=KS.
Moreover, if B is any bounded set in L2[0, T'] the set {kx|x in B} is
bounded and is equicontinuous in norm; thus, it has compact closure.
It follows that K is completely continuous, and consequently K.S is a
completely continuous self-adjoint operator on the Hilbert space
L2[0, T]. Let \,, n=1, 2, - - -, be the characteristic values of XS
and let ¢,, =1, 2, - - -, be the corresponding orthonormal char-
acteristic functions. Since the null space of K.S consists of the zero
element alone, the characteristic functions ¢, form a complete ortho-
normal system for L2[0, T']. The equation kx=f with k in L[0, T]
and f in L2[0, T] has a solution in L2[0, T'] if and only if

2 If k is not real, i.e. K.S is not self-adjoint, essentially these same methods can be
used. See F. Smithies, Integral equations, Cambridge Tracts in Mathematics and
Mathematical Physics, No. 49, Chapter VIII.
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20 | (fy éu)/Ma|2< 0, and if this quantity is finite that solution is
given by

(f) ¢”)
An

X = ? S(d’n).

Even if there is no solution in L2[0, T] the functions

N
y Pn
xf,N=Z(f>‘ )S(d’n) N=12--.
0 n

are such that K(xy)= 2.5 (f, ¢n)dn—f in L2[0, T] and a fortiori in
L[0, T] as N— ». We can now construct an approximate solution to
the equation kx=7. For each positive integer 7 pick f; in L?[0, 4] such
that || —fil| s <1/4, and for each i take N; such that ||f;—xy, v/ :<1/4.
The functions x; which are such that x(f) =x;,~,(t) on [0, ¢] and
x;(t) =0 for t>1 constitute an approximate solution to the equation
kx=r.

4. For 0<a<® let £a= {x|xE & and ||x||.=0]}.

COROLLARY 1. 4 s a closed proper ideal in £ if and only if A= L,
for some .

ProoF. Clearly each £, is a closed proper ideal. If 4 is a closed
proper ideal in & let f=inf{B]|B8>0, Ixc4, Hx”p>0}. B is a non-
negative number, and by the above theorem A, being closed, con-
tains £ for each 8> B. Since 4 is closed and not equal to £, § is not
zero and 4 = £3.

In particular there are no proper maximal ideals in £ or in any of
the Banach algebras L[0, T'], T>0. This yields a theorem of Ryll-
Nardzewski [2]:

COROLLARY 2. For fE &L, f*—0in £ as n— .

ProoF. Since L[0, T'] has no maximal ideals the spectral radius of
fELJ0, T] equals zero, and thus “f"“q'—->0 as n— » for each 7'>0.
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