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This note comments on recent Russian results in Hilbert space.
Macaev [9] has given a fundamental estimate of completely continu-
ous transformations which have no nonzero spectrum. The same
estimate is true of transformations with imaginary spectrum.

THEOREM 1. Let T be a densely defined transformation in o Hilbert
space 3 such that T* has the same domain as T and T — T* has a com-
pletely continuous extension. Suppose that

(1) T — T* C 2i ), sgn ko,

where (cx) is an orthogonal set in 3C, indexed by the odd integers,
lcesall e for k>0, |[ces]] <||ci] for £ <0, and

©) o= 2Zllall*/| ] <.

If the spectrum of T is imaginary, then the spectrum of 3(T+T*) is
contained in the interval [—28/w, 28/x).

If @ and b are elements of a Hilbert space, @b is the inner product,
@b=(b, a), and ab is the linear transformation defined by (ab)c
=a(bc) for every ¢ in 3. The proof of Theorem I is similar to
Macaev's except that it depends on the following new estimate of
eigenvalues.

TrEOREM 11. Let S be an everywhere defined and bounded transforma-
tion in o Hilbert space 3C, which has imaginary spectrum, such that

S — 8* = 2i 2 byba,
where (b,) is an orthogonal set in 3¢ and Y||ba||? is finite. Then,
S 4+ 8% =2 sgn kapdy,

where (ar) is an orthogonal set in 3C, indexed by the odd integers,
llaxsal| <||ail| for £>0, ||ar-a| <||as| for E<0, and

a2 = @/m) (X ||oal]2)/ | B
for every k.

Macaev [9] has given a fundamental existence theorem for invari-
ant subspaces. It can be deduced directly from Theorem I without
using, as he indicates, an additional estimate of resolvents. Neither
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boundedness nor a real spectrum is necessary in the statement of the
theorem.

THEOREM 1I1. Let T be a densely defined transformation in a Hilbert
space 3C such that T* has the same domain as T and T —T* has a com-
pletely continuous extension of the form (1) where (2) holds. If k is a
given real number, there exists a closed subspace M of 3¢, which is invari-
ant under the resolvents of T, such that the restriction of T to 9N has its
spectrum in the half-plane x < h and the restriction of T* to the orthogonal
complement of I has its specirum in the half-plane x = k.

Macaev's existence theorem is stated for transformations which
are, in a technical sense, nearly selfadjoint. A similar existence theo-
rem holds for transformations which are nearly unitary.

THEOREM IV. Let T be an everywhere defined and bounded trans-
formation in o Hilbert space 3C which has an everywhere defined and
bounded inverse. Suppose that

(3) T*T —-1= Z ekcktfk,

where (ci) is an orthogonal set in 3, ev= +1 for every k, ||cid| < cil],
and

O 2llalz/ 2] < .

If a is a given real number, 0 <o <, then there exists a closed subspace
N of 3C which is invariant under T and T, such that the restriction of
T to I has its spectrum in the sector —a=0=c, and the restriction of
T* to the orthogonal complement of I has its spectrum in the comple-
mentary sector a =0 = 2w —ou.

Invariant subspaces of this nature need not exist if the hypotheses
of Theorem IV are not satisfied.

TuEOREM V. Let (cx) be an orthogonal set in a Hilbert space 3C
such that ||| S ||cil| <1 for every k, lim ¢, =0, and (4) is not satisfied.
Let e,= 11 for every k. Then there exists an everywhere defined and
bounded transformation T in 3C, with an everywhere defined and bounded
inverse, which satisfies (3), and the specirum of the restriction of T to
every nonzero closed subspace invariant under T and T is the full unit
circle |z| =1.

The proof of Theorem V depends on the theory of translation in-
variance. If W(x) is a complex valued function of integral x, consider
the corresponding Hilbert space of functions f(x) of integral x, such

that
: Iz =X | fm)/Wm) |2 < .
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If W(x)/W(x—1) and W(x)/W(x+1) are bounded, the translation
operator T':f(x)—f(x—1) is bounded and has a bounded inverse.
Complete continuity of 7*T —1 means that

lim | W(x)/W(x—1)| =1

as | x| — o, and in this case the spectrum of the transformation is the
unit circle. If ] W(x)| is increasing for negative x and is decreasing
for positive x, condition (4) is equivalent to

Z A+ n)tlog |[W(m)| > — .

The proof of Theorem V is completed using a theorem of Levinson,
as it is stated in [1].

In the situation of Theorem III, T has an integral representation
of the form

T = f W0)dPG) + f PG)(T — T*dP(),

where P(x) is a nondecreasing function whose values are projections
into invariant subspaces for the resolvents of 7". The first term on the
right is a selfadjoint transformation. The second term is an every-
where defined and bounded transformation with imaginary spectrum.
The theory of this second integral is that of Gohberg and Krein [6],
except that it is not restricted to transformations which have the
origin as the only point in the spectrum. The integration theory in-
volves three distinct topics: (a) the uniqueness of transformations
with given invariant subspaces, (b) the existence of sufficiently many
invariant subspaces to characterize a given transformation, and (c)
the existence of transformations with given invariant subspaces.
Theorem I is the essential estimate in each case.

A fundamental problem is to determine the uniqueness of such
integral representations. The essential difficulty is due to the lack of
information about invariant subspaces of transformations whose
spectrum is a point. In special cases the invariant subspaces are
totally ordered by inclusion. Results of this nature are obtainable
from the theory of Hilbert spaces of entire functions [2]. This theory
contains implicitly a determination of the invariant subspaces of
transformations 7', with no nonzero spectrum, when T— T* has two
dimensional range and its eigenvalues are not on the same side of the
real axis. See [3] for the relation between Hilbert spaces of entire
functions and invariant subspaces of transformations. In particular
the results of [2] may be used to verify a conjecture of Krein, stated
by Brodskii [5], that the real invariant subspaces of the above trans-
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formations are totally ordered by inclusion.

Unfortunately Theorems VI and VIII of [3] are erroneous as
stated. Theorem VIII is easily corrected, but we can find no valid
form of Theorem VI which does not leave a gap between the problem
of invariant subspaces and factorization problems for operator valued
analytic functions. What is false in Theorem VI is that M(a, b, 2),
M(b, ¢, 2), and M(a, ¢, 3) need satisfy condition (4) there, which
implies that the corresponding spaces have a trivial structure. As a
result the existence of invariant subspaces is not known in all cases
in which the M (2) function can be factored.

Added in proof. The following hypothesis should be added to
Theorem V. The orthogonal set (¢x) is complete in 3¢ unless there are
only a finite number of positive € or of negative €, in which case the
orthogonal complement of the ¢ is of countably infinite dimension.
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