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M. Davis and M. Maschler have conjectured [1] that for each
coalition structure! B in a cooperative game, there exists a payoff
vector X such that the payoff configuration (x; B) is stable, i.e., be-
longs to the bargaining set M. We outline here a proof of the con-
jecture.? The details of the proof will be published elsewhere.

Let B=By, B;, + - -, By, be a fixed coalition structure for an #-
person game T' with a characteristic function v(B), satisfying #(B) 20,
and () =0 for 7=1, 2, - - - , n. We denote by X (B) the space of the
points X= (x, X2, - - - , %,) such that (x; B) isan individually rational
payoff configuration (i.r.p.c.). Thus, X(B)=S:XS:X - -+ XSn,
where for j=1, 2, - - -, m, S; is the simplex

{iBi = {xk}keg,.: x, = 0 and E X = v(Bj)} .
kE€B;

LeMMA. Let ' (x), ¢*(x), * - -, ¢*(X) be non-negative continuous real
Sfunctions defined for X (B). If, for each x in X(B), and for each
coalition B; in B, there exists a player ¢ in Bj, such that ci(x) =x;,
then there exists a point £= (&1, &, « + + , &) in X (B) such that c*(£) &
forallk, k=1,2,-. -, m.

The proof is indirect and one arrives at the contradiction by using
Brouwer's fixed point theorem.

Let (x; B) be an i.r.p.c. We shall denote by (y3/, X¥—Bi; B) an i.r.p.c.
which results from the previous one by holding the payments to the
players in N— B; fixed, and giving each player % in B;, B,&B,an
amount y,. Clearly, X¥—Bi is the projection of x on the space S;1X - - -
XS;1XSj41X -+ + X Sm, and §8i={y} is a point in S;.

Let E}(x) be the set of points ¥2i in .S;, having the property that in
(yBi, x¥N—Bi; P), player 4, 1€ B;, is not weaker than any other player.
The set E}(x) is closed and contains the face y;=0 of .S;. (See [2].)

We now define for each player ¢,2=1, 2, - - - , n, the function

¢i(x) = x;+  Max Min (% — yi).
Yier;® keBj

Here, B; is that coalition of B which contains player 7.

1 Throughout this paper we shall use the definitions and the notations of [2].
2 Another proof has been given by the author, M. Davis, and M. Maschler. It
has been decided to publish this version, which is simpler.
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It can be shown that c¢i(t) is a non-negative continuous function
of x.

Since D _res; %i= Zkeg, v =v(B;), it follows that ¢i(x) <x; for all
3,1=1,2, .- -, n Let E; t=1, 2, -+ ., n, be the set of points x,
x& X (B), for which < is not weaker than any other player of the coali-
tion B; which contains player 4. Clearly, (x; B)EM® if and only if
xENE., Ei. If XEE;, then its projection X2i on S; belongs to E}(x).
In this case ¢i(x) =x;. Conversely, if ¢i(x) =x;, then some §BiE E}(x)
must be equal coordinatewise to xPi, hence t&EE,.

It is proved in [2] (see proof of Theorem 2), that for each x,
x& X (B), and for each coalition Bj;, B;& B, there exists a player 1,
1€ B;, such that xE€E,;. Thus, for this player, ¢{(x) =x;. By the
lemma, there exists a point £, £¢E€X(B), such that ¢*(¢) =§&; for all %,
k=1,2, - - -, n. Therefore, {EN:., Ex, and so (§, B)EM{. We have
thus proved:

THEOREM. Let B be a coalition structure in an n-person cooperative
game; then there always exists a payoff vector X such that (x; B)EM®.

This work was done under the supervision of Dr. R. J. Aumann, as
part of a doctoral thesis to be submitted at the Hebrew University.
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