EXISTENCE THEOREM FOR THE BARGAINING SET M(1)

BY BEZALEL PELEG

Communicated by C. B. Tompkins, September 11, 1962

M. Davis and M. Maschler have conjectured [1] that for each coalition structure 1 B in a cooperative game, there exists a payoff vector \mathbf{x} such that the payoff configuration $(\mathbf{x}; \mathbf{B})$ is stable, i.e., belongs to the bargaining set $\mathbf{M}_1^{(i)}$. We outline here a proof of the conjecture. The details of the proof will be published elsewhere.

Let $\mathbf{B} \equiv B_1, B_2, \dots, B_m$ be a fixed coalition structure for an *n*-person game Γ with a characteristic function v(B), satisfying $v(B) \ge 0$, and v(i) = 0 for $i = 1, 2, \dots, n$. We denote by $X(\mathbf{B})$ the space of the points $\mathbf{x} \equiv (x_1, x_2, \dots, x_n)$ such that $(\mathbf{x}; \mathbf{B})$ is an individually rational payoff configuration (i.r.p.c.). Thus, $X(\mathbf{B}) = S_1 \times S_2 \times \dots \times S_m$, where for $j = 1, 2, \dots, m$, S_j is the simplex

$$\left\{\hat{\mathbf{x}}^{B_j} \equiv \left\{x_k\right\}_{k \in B_j} : x_k \ge 0 \text{ and } \sum_{k \in B_j} x_k = v(B_j)\right\}.$$

LEMMA. Let $c^1(\mathbf{x})$, $c^2(\mathbf{x})$, \cdots , $c^n(\mathbf{x})$ be non-negative continuous real functions defined for $\mathbf{x} \in X(\mathbf{B})$. If, for each \mathbf{x} in $X(\mathbf{B})$, and for each coalition B_j in \mathbf{B} , there exists a player i in B_j , such that $c^i(\mathbf{x}) \geq x_i$, then there exists a point $\xi \equiv (\xi_1, \xi_2, \cdots, \xi_n)$ in $X(\mathbf{B})$ such that $c^k(\xi) \geq \xi_k$ for all $k, k = 1, 2, \cdots, n$.

The proof is indirect and one arrives at the contradiction by using Brouwer's fixed point theorem.

Let $(\mathbf{x}; \mathbf{B})$ be an i.r.p.c. We shall denote by $(\mathbf{y}^{B_i}, \hat{\mathbf{x}}^{N-B_i}; \mathbf{B})$ an i.r.p.c. which results from the previous one by holding the payments to the players in $N-B_j$ fixed, and giving each player k in B_j , $B_j \in \mathbf{B}$, an amount y_k . Clearly, \mathbf{x}^{N-B_i} is the projection of \mathbf{x} on the space $S_1 \times \cdots \times S_{j-1} \times S_{j+1} \times \cdots \times S_m$, and $\hat{\mathbf{y}}^{B_j} \equiv \{y_k\}$ is a point in S_j .

Let $E_j^i(\mathbf{x})$ be the set of points $\hat{\mathbf{y}}^{B_i}$ in S_j , having the property that in $(\hat{\mathbf{y}}^{B_i}, \hat{\mathbf{x}}^{N-B_i}; \mathfrak{B})$, player $i, i \in B_j$, is not weaker than any other player. The set $E_j^i(\mathbf{x})$ is closed and contains the face $y_i = 0$ of S_j . (See [2].)

We now define for each player $i, i=1, 2, \dots, n$, the function

$$c^{i}(\mathbf{x}) \equiv x_{i} + \underset{\hat{\mathbf{y}}^{B_{j}} \in E_{j}^{i}(\mathbf{x})}{\operatorname{Max}} \quad \underset{k \in B_{j}}{\operatorname{Min}} (x_{k} - y_{k}).$$

Here, B_i is that coalition of **B** which contains player i.

¹ Throughout this paper we shall use the definitions and the notations of [2].

² Another proof has been given by the author, M. Davis, and M. Maschler. It has been decided to publish this version, which is simpler.

It can be shown that $c^{i}(x)$ is a non-negative continuous function of x.

Since $\sum_{k \in B_j} x_k = \sum_{k \in B_j} y_k = v(B_j)$, it follows that $c^i(\mathbf{x}) \leq x_i$ for all $i, i = 1, 2, \dots, n$. Let $E_i, i = 1, 2, \dots, n$, be the set of points \mathbf{x} , $\mathbf{x} \in X(\mathbf{B})$, for which i is not weaker than any other player of the coalition B_j which contains player i. Clearly, $(\mathbf{x}; \mathbf{B}) \in \mathbf{M}_1^{(i)}$ if and only if $\mathbf{x} \in \bigcap_{k=1}^n E_k$. If $\mathbf{x} \in E_i$, then its projection $\hat{\mathbf{x}}^{B_j}$ on S_j belongs to $E_j^i(\mathbf{x})$. In this case $c^i(\mathbf{x}) = x_i$. Conversely, if $c^i(\mathbf{x}) = x_i$, then some $\hat{\mathbf{y}}^{B_j} \in E_j^i(\mathbf{x})$ must be equal coordinatewise to \mathbf{x}^{B_j} , hence $\mathbf{x} \in E_i$.

It is proved in [2] (see proof of Theorem 2), that for each \mathbf{x} , $\mathbf{x} \in X(\mathbf{B})$, and for each coalition B_j , $B_j \in \mathbf{B}$, there exists a player i, $i \in B_j$, such that $\mathbf{x} \in E_i$. Thus, for this player, $c^i(\mathbf{x}) = x_i$. By the lemma, there exists a point ξ , $\xi \in X(\mathbf{B})$, such that $c^k(\xi) = \xi_k$ for all k, $k = 1, 2, \dots, n$. Therefore, $\xi \in \bigcap_{k=1}^n E_k$, and so $(\xi, \mathbf{B}) \in \mathbf{M}_1^{(i)}$. We have thus proved:

THEOREM. Let **B** be a coalition structure in an n-person cooperative game; then there always exists a payoff vector **x** such that $(\mathbf{x}; \mathbf{B}) \in \mathbf{M}_1^{(t)}$.

This work was done under the supervision of Dr. R. J. Aumann, as part of a doctoral thesis to be submitted at the Hebrew University.

REFERENCES

- 1. M. Davis and M. Maschler, Existence of stable payoff configurations for cooperative games, Econometric Research Program, Research Memorandum No. 38 (1962), Princeton University, Princeton, N. J.
- 2. ——, Existence of stable payoff configurations for cooperative games, Bull. Amer. Math. Soc. 69 (1963), 106-108.

HEBREW UNIVERSITY OF JERUSALEM