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1. Manifolds similar to spheres. 
1.1. Let S=Sn be the w-dimensional sphere, endowed with the 

usual metric of constant Riemannian curvature 1. Let G=(p(s)), 
0^s< oo, be a geodesic ray in Sn, s being the arc length. Then the 
conjugate points of £(0) on G occur at S = IT, I a positive integer, with 
multiplicity n — 1. 

Let G be a geodesic ray in a Riemannian manifold M=Mn of 
dimension n. The following condition may be interpreted, at least for 
k = n — 1, as saying that the first k conjugate points on G are similarly 
distributed as on the sphere Sn: 

(2, k) There are no conjugate points in the interval [0, w[and at least 
k conjugate points in [7r, 2TT[, each counted by its multiplicity, 

1.2. The following proposition gives a sufficient, but not neces­
sary condition for the validity of (2, n —1). For the proof see Morse 
[5]. 

PROPOSITION 1. Let G~(p(s)) be a geodesic ray in a Riemannian 
manifold Mn. Assume that the Riemannian curvature K(<r) of a plane 
section a, tangent to G at a point p(s) with s^2w satisfies 

(1) 1/4 < K(cr) S 1. 

Then (2, n — 1) holds f or G. 

1.3. We now study the implications of (2, k): 

LEMMA 1. Let M=Mn be a simply connected, complete Riemannian 
manifold and assume that there is a point oÇzM such that for each 
geodesic ray, starting at o, (S, k) holds with k^2. Then M is compact. 
There is a point o'(EM with d(o, o')~0 and not conjugate to o such that 
each geodesic from o to of which is not the geodesic of minimal length 
d{o, o') has length lz2ir — d(p, O')~2TT and, therefore, has an index *zk. 

Hence, the loop space Q,(o, of) has the homotopy type of a 0-cell to 
which there are attached cells of dimension à k. 

The proof of this lemma goes along the same lines as the proof of 
the lemma in [4] except that Rauch's comparison theorem is replaced 
by an application of the Gauss lemma. 
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1.4. Using standard facts in Morse theory we have 

THEOREM 1. If M is an n-dimensional, simply connected, complete 
Riemannian manifold with the property that there is a point oÇzM such 
that each geodesic ray starting from o satisfies (2, k), with k*z2, then 
Wi(M)=0for léiûk. 

If here (n — l)/2^k, then Poincarê duality and standard facts in 
homotopy theory yield that M has the homotopy type of the sphere and 
hence, according to Smale [7], M is actually homeomorphic with the 
sphere y at least for n^Z and n?*4:. 

Combined with Proposition 1 we get 

THEOREM 2. Let Mn be a complete, simply connected Riemannian 
manifold. If there is a point o (EM such that for each plane section <r, 
tangent to one of the geodesic segments of length 2TT emanating from 0, 
the Riemannian curvature K(<r) satisfies (1), then Mn is compact and 
has the homotopy type of the sphere and even is, at least for nj^Z, 4, 
homeomorphic with the sphere. 

1.5. Presumably, under the assumptions of Theorem 2, Mn is 
homeomorphic to the sphere for all n. At least, this is the case when 
the assumptions do hold for all ö £ M or, what is the same, if (1) 
holds for all plane sections o* of M. As this follows was shown in [4], 
from an argument provided by Berger [ l ] . A variation of this argu­
ment was given independently by Toponogov [9]. Both proofs are 
based on the information on the length of closed geodesies as provided 
by Lemma 1 and on Toponogov's theorem on geodesic triangles 
(cf. [8]). Tsukamoto [lO] gave a third proof in which only an in­
finitesimal version of the triangle theorem is used which is due to 
Rauch [6]. 

2. Manifolds similar to one of the other compact, irreducible sym­
metric spaces of rank 1. 

2.1. Recall that these spaces belong to one of the following classes 
(cf. Cartan [2]): 

The complex projective space, P ( l ) n , having a dimension n — 2m 
^ 4 . 

The quaternion projective space, P(3)n , having a dimension 
w==4mè8. 

The projective Cayley plane, P(7)n , having the dimension n—16. 
These spaces shall be endowed with their usual metric in which the 

values of the Riemannian curvature vary between 1 and 1/4. Let G= 
(p(s)) be a geodesic ray in the space P(aOn, « G {1, 3, 7} . Then the 
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conjugate points of p(0) on G occur a t s~ (21— l ) r , I a positive inte­
ger, with multiplicity a, and a t s = 2/7T, I a positive integer, with 
multiplicity n — 1. 

2.2. The following condition may be paraphrased by saying that 
the distribution of the conjugate points is, to the given degree, 
similar to the distribution which occurs in the symmetric space 
P (a ) n , a G { l i 3, 7} : II(CK, n). There are no conjugate points in the 
intervals [O, TT [ and [S7r/4, 2TT [, there are a conjugate points in [T, 57r/4 [ 
and there are n-~l conjugate points in [27T, 57T/2[, n=(a+l)mi each 
counted with its multiplicity. 

2.3. Let 0 be a point in a complete Riemannian manifold M = Mn. 
Consider the exponential map exp : Mo—>M of the tangent space Mo 
of M a t 0 onto M. To each ray G=(p(s)), 0^s< 00, in ikfo, starting 
from the origin o G-Wo, there corresponds the geodesic ray G=(p(s)), 
0 ^ s < 00, in Mf starting from oÇzMin the same direction as G. Then 
p(s) is a critical point for the exponential map if and only if p(s) is 
a conjugate point on G. 

We use this well-known fact to explain what it means that II (a, n) 
holds for all geodesic rays starting from 0 ; later we will see that this 
property has far reaching consequences for the topology of M. 

Denote by B (s) the open ball in Mo of radius 5 and center at the 
origin Ö£ .MO. Then our assumption implies, first of all, that there 
are no critical points for exp in B(TT). In contrast, a ray G passing 
through D = B(5ir/4:)—B(jr)1 will hit a critical points; we like to 
think, therefore, of D as of some sort of van Allen radiation belt. 
But once we are beyond this belt we reach again a safe region 
E=ZB(2T)—B(5T/4:) without critical points. The far side of E, how­
ever, is again surrounded by a dangerous belt, i.e., B(5T/2) — 5(2x), 
which is thickly populated (n — 1 on each ray!) with critical points. 

I t is the safe belt £ , beyond the first dangerous belt D, which con­
stitutes the essential new feature compared with the situation con­
sidered in Chapter 1. 

Note that for the symmetric space P(a)n the two dangerous belts 
are squeezed together into spheres of radius w and 27T, respectively. 

The condition II(a, n) may be interpreted as a certain perturbation 
of this highly degenerate and unstable situation. Of course, one may 
consider even stronger perturbations than the one described by 
IL(a, n). However, the results we are able to draw in such a case are 
less conclusive than the one presented below. 

2.4. The following proposition gives a sufficient but not necessary 
condition for the validity of 11(1, n) in a Kâhler manifold M~Mn. 
First we recall tha t a plane section <r in M determines an angle 
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O) = CÜ(CT), Oâco^7r/2, in the following way: If X is a vector 7*0 in <r, 
let <r be the 2-plane spanned by X and JX, J being the imaginary 
operator; then co(cr) is defined as the angle between <r and <r. 

For the complex projective space P ( l ) the Riemannian curvature 
K(<r) of a plane section <r depends only on the angle œ = œ(<r) and is 
given by ICi(co) = (1 + 3 cos2 o>)/4. 

PROPOSITION 2. L ^ M"n fo a Kahler manifold. Let G=(p(s)) be a 
geodesic ray in Mn. Assume that the Riemannian curvature K(<r) of a 
plane section <x, tangent to G at a point S^2TT satisfies 

(2) 0.64 iTi(«(<r)) < K(<r) g ÜTi(co(cr)). 

Then 11(1, n) holds f or G. 

The proof follows from the index theorem of Morse [5]. 
2.5. We now give the implications of II(a, n)t a £ {1, 3, 7} . 

LEMMA 2. Let Mn be a simply connected, complete Riemannian mani­
fold and assume that there is a point oÇzM such that II (a, n) holds f or 
each geodesic ray starting from o. For a = l assume, in addition, that 
there is a point in M which has distance irfrom o. We note that this is the 
case if M has positive Riemannian curvature for all plane sections (cf. 
[3]). Then the following does hold: 

(i) M is compact. 
(ii) There is a point o ' G M with d(o, o')~0 and not conjugate to 0 

such that the loop space ti(o, O') contains no geodesic of index i with 
0<i<a. 

(in) There is a point o"ÇiM with d(o, o")~w and not conjugate to 
0 such that the loop space £2(0, o") contains only geodesies which either 
have length <$Tc/2—d(o, o")~3ir/2 and hence have an index Sot or 
have length >Zir/2+d(o, O")~5'K/2 and hence have an index ^n — 1 
+a. Furthermore, the subspace Q2v of Q,(o, of), formed by the curves of 
length S2w (which contains only geodesies of index ^a) has the ho-
motopy type of the a-sphere. 

(iv) The loop space of M has the homotopy type of an a-sphere to 
which there are attached cells of dimension >n — 2+a. 

(i) is clear, (ii) follows from Lemma 1 which, for a = 3, 7, also yields 
the existence of a point with distance ir from 0. 

To prove (iii) we introduce the subspace Ü=Ü(o, o") of Q = Q(o, 0") 
consisting of those curves which start out from 0 as a geodesic seg­
ment of length 57T/4 and then continue to o". On ti we consider the 
length function. Then there are two types of critical points: First, 
the geodesic segments from 0 to o" of length èS7r/4; their index in 
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Ü is a units less than it is in Q. Second, there are the once broken 
geodesic segments of the following form: They start as a geodesic 
from 0 to o" of length <57r/4 and then go on beyond 0" until they 
reach the length 57r/4 and then they return the same way back to 
0". The index in Q of such a critical point is given by the number of 
conjugate points on the initial segment of length S7r/4 which occur 
after Ö". That means: If the initial segment from 0 to 0" of length 
< S 7 T / 4 has index i in £2, the broken segment has index a—i in Ö. 

The statements in (iii) on the length of geodesies in B(o, 0") are 
now proved with the help of a lifting argument for a homotopy 
between two critical points in S, similar to the one used in the proof 
of Lemma 1. This time, however, the lifting of the curves of Ü into Mo 
does not give curves in B(r) but gives curves which start out from 
tf£ikfo as a straight segment of length 57r/4 which brings them into 
the safe region E = B(2T)— B(5T/4:) (cf. 2.3) where they then con­
tinue to stay until either they fall back into the van Allen belt D 
(cf. 2.3) which is the uninteresting case or until they reach the outer 
border of E at a distance 27r. 

The last statement in (iii) is proved by noting that ti2ir and Ü2ir 

have the same homotopy type but yield CW-complexes which are 
dual to each other. Standard facts then give (iv). 

2.6. Property (iv) in Lemma 2 implies that Mn and P(a)n have the 
same homotopy groups up to dimension n — 1 + a . A spectral sequence 
argument gives tha t Mn and P(a)n have the same integer cohomology 
ring. Combining this with Proposition 2 we get 

THEOREM 3. Let Mn, n^4,bea complete Kahler manifold and assume 
that the Riemannian curvature K(<r) of the plane sections a of Mn satis­
fies (2). Then Mn has the homotopy type of the complex projective space 
P(D*. 

Indeed, since 7i\(P(l)n) = 0 for 3^i^n, it is possible to extend a 
map of the 2-skeleton of M into P ( l ) to a map of M into P ( l ) . In 
particular, this can be done such as to imply an isomorphism of the 
cohomology ring. But then M and P ( l ) have the same homotopy 
type (cf. Whitehead [ l l ] ) . 

On the other hand, for a = 3, 7, we have at least 

THEOREM 4. Let M be a simply connected, complete Riemannian 
manifold of the same dimension as the symmetric space P(a)n> a G {3, 7} . 
If there is a point OÇLM such that II(a, n) holds for each geodesic ray 
starting at o then M is compact and has the same integer cohomology ring 
as P(a)n. 
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