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1. The present note is a summary of results obtained in the study 
of groups of automorphisms of a Borel space (the pertinent defini­
tions are given in §2). Our object is to generalize some aspects of the 
classical theory of von Neumann [15] and Kryloff-Bogoliouboff [ l l ; 
16], involving a single automorphism. The main results of this note 
are announced for countable but otherwise arbitrary groups of auto­
morphisms of "sufficiently smooth " Borel spaces. Appropriate coun­
terexamples can be given to illustrate the difficulties that arise when 
the "smoothness" restrictions on the Borel spaces are dropped. De­
tails will be given in a future publication. 

2. A Borel space is a pair (X, (B) where X is an abstract set and (B 
a cr-algebra of subsets of X ; when no confusion can arise we refer to 
X itself as the Borel space. (X, <B) is countably generated if there is a 
denumerable sub-family 3)C(B such that (B is the smallest <r-algebra 
of subsets of X containing 2D. (X, (B) is standard if the cr-algebra (B 
is cr-isomorphic to the cr-algebra of Borel subsets of a complete separa­
ble metric space. (X, (B) is analytic if (B is cr-isomorphic to the cr-
algebra of Borel subsets of a separable metric space which is an ana­
lytic set in its completion. (For the relevant techniques involving 
standard and analytic spaces see [2; 12; 14].) A measure v on a Borel 
space (X, (B) is a nonnegative countably additive set function on (B 
with F ( X ) = 1. If SflZ is a set of measures on (X, (B) we denote by 
a(3ïl, (B) the smallest cr-algebra of subsets of 9TC with respect to which 
the maps TA'- v—>v(A) are measurable for each ^4£(B; when we speak 
of the Borel space Sfll we mean (2fTC, 0t(9fTC, (B)). An automorphism a of 
(X, (B) is a one-one map of X onto itself such that a~1(^4)GCB if and 
only if A £ &. A G-space is a triple (X, (B, G) where (X, (B) is a Borel 
space, G a group and for each g £ G there exists an automorphism aQ of 
(X, (B) such that oiQxQ2^aQX o aP2 for all gi, g2£G. The G-space is said 
to be countably generated (respectively standard, analytic) if (X, (B) 
is so. A measure v on (X, (B) is G-invariant if v(A) ~v{oLg~l(A)) for all 
i G ( B and g £ G ; it is G-ergodic if it is G-invariant and if v(A) = 0 or 1 
for any .4£(B which is invariant, i.e., a71(^4)=^4 for all g £ G . The 
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(T-algebra of all A £ (B which are invariant is denoted by (BG, and by (B 
when no confusion can arise. We write 5x,(B (or 3) and 8x,(B (or 8) 
for the set of G-invariant and G-ergodic measures respectively. I t is 
well known, if G is countable, that 8 is the set of extreme points of the 
convex set 3. If (X, (B, G)Js a G-space we write 91 = {A: A G CB, v(A) 
= 0 for each M G 3 } and 91 = {̂ 4 : 4 £ 9 1 , 4̂ invariant} = 9lH(B. For 
any Borel space (X, (B) we write $F for the Banach space of all real 
valued bounded functions f on X which are (B-measurable with 
11/11 =supa;ex 1/001. If X is a topological space we denote by C(X) 
the space of bounded real valued continuous functions on X. 

3. I t is an important consequence of the von Neumann-Kryloff-
Bogoliouboff theory that every measure invariant under an auto­
morphism of a sufficiently smooth Borel space is an integral of ergodic 
measures. Such representation theorems are, in special contexts, 
consequences of the general representation theorems of Choquet [4] 
and Bishop-deLeeuw [ l ] . For our theory we begin with the following 
much simpler proposition. This proposition can be immediately de­
duced from the Choquet-Bishop-deLeeuw theorems; but it is not 
necessary to do so since a simple proof of it is available. We remark 
also that in our special context we shall obtain representation theo­
rems more general than those of Choquet and Bishop-deLeeuw (cf. 
Theorem 4). 

THEOREM 1. Let X be a normal Hausdorff space and (B the a-algebra 
of Baire sets of X, i.e., the smallest cr-algebra of subsets of X with respect 
to which all elements of G(-XT) are measurable. Let T be a convex set of 
measures on (X, (B) which is compact in its weak*-topology and let T' 
be the set of extreme points of T. Then for a given ^4£(B, v(A) = 0 for 
all J>GT if and only if v(A) ~0for all ^ £ T ' . 

The "only i P part is trivial. For the " iP part we may assume A 
is a closed Gg. If we write u~sup{v(A): *>£T} and Ti= {JU: J U £ T , 

fji(A)~u} then it can be easily shown that Ti is a nonempty closed 
(hence compact) convex subset of T. If e is an extreme point of Ti 
then e £ r ' and this proves the theorem. 

In the Kryloff-Bogoliouboff theory the notion of a time-average of 
a function plays an important role. Our basic observation is that if 
a is an automorphism of (X, (B), ƒ a bounded (B-measurable function 
and fi is any invariant measure, limn^ (l/n)(f(x)+f(ax)+ • • • 
-\-f(an~'1x)) is the conditional expectation EM(/1 (Btt) of ƒ given the 
cr-algebra of sets in (B which are invariant under a (see [6; 13] for 
a detailed discussion of conditional expectations and their properties). 
Our purpose now is to construct a mapping [/:ƒ—>ƒ* with fairly 
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reasonable properties such that for each G-invariant measure v, 
ƒ* = £„(ƒ((&) ^-almost everywhere. 

THEOREM 2. Let (X, (B, G) be a G-space, G being a countable group. 
Then there exists a mapping U of $ into itself, £/:ƒ—>ƒ* with the follow­
ing properties :J$) If f *=0, thenf*^0. (ii) ƒ* is ^-measurable andf* =ƒ 
if ƒ itself is (^-measurable, (iii) For any G-invariant measure v, ƒ* 
= E„(/|(B) v-almost everywhere, (iv) ||/*J| :g| |/ | | . Moreover if U\ and 
U2 are two such mappings andf&s, then \x: (Uif)(x)9é(U2f)(x)} G 91. 

By exhibiting G as U L̂x G& where Gk is generated by & elements and 
GiÇIG2£ • • • , and utilizing the so-called martingale-reversed con­
vergence theorem [13, pp. 389-396], we drop down to the construc­
tion of U for the G-space (X, (B, Gfc). For k — 1 we are through using 
the Birkhoff ergodic theorem; the general case is settled by induction. 
If Gk+i is the group generated by Gk and a cyclic group Z^+i, Fi, V2 the 
mappings similar to U for the G-spaces (X, (B, G&) and (X, (B, Z*+i) 
then we construct 27 for (X, (B, G&+i) by utilizing the Hopf-ergodic 
theorem [lO] or the recent results of Burkholder-Chow [3]; their 
application rests on the observation that (&Gk+1 = (&Gk(^(&zk+l where 
(&H denotes, for any subgroup HQG, the cr-algebra of sets ^4£(B 
which are invariant under H. 

Utilizing various technical devices we can now obtain the follow­
ing theorem valid for standard G-spaces. A similar result can be 
proved for analytic G-spaces but its precise formulation is somewhat 
more delicate. We recall that 8 is the set of G-ergodic measures. 

THEOREM 3. Let G be a countable group, let (X, (B, G) be a standard 
G-space and let 3 ^ 0 . Then 8 ^ 0 and there exists a set iVG 91 and a 
map 6: x—>dx of X — N onto 8 with the following properties: (i) For each 
bounded (^-measurable function ƒ, the function x—>fxf(y)dOx(y) is (B-
measurable. In particular, x—>0x is a measurable map and dag(X)—dxfor 
all xÇzX — N and gGG. (ii) For any bounded (^-measurable ƒ and any 
G-invariant measure v, we have Jxf(y)dv(y) = fx-N(fxf(y)ddx(y))dv(x). 
In particular, if we write J f or the function which is 0 over N and is 
Jxf{y)ddx{y) for any # G X — N, then f=Ey(f\(&) v-almost everywhere. 
If x-*6x is another such map, {x: 015^0*} G91, i.e., is an invariant set 
whose measure is zero under every invariant measure. 

COROLLARY. For any eÇz& write £«= {x:, xGX-N, ex = e). Then 
Eeir\Ee2 = 0 if el5*e2, \Jee&Ee = X-N and for e'GZ, ef(Ee) = t if 
e' = e, = 0 if e' 9^e. Moreover, if v is any invariant measure and A G (B, 
we have 
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v{A) = f 6x(Ar\Eex)dfx(x). 
J X-N 

REMARK. I t may be noted that the results of Theorem 3 have non­
empty content as soon as 3 - ^ 0 . We shall observe later that for any 
countable G there are always standard G-spaces (X, (B, G) for which 
3 (and hence 8) are nonempty. 

THEOREM 4. Let G be a countable group, let (X, (B, G) be an analytic 
G-space, and let 3 ^ 0 . Then 8 ^ 0 and 8 is an analytic Borel space. 
Moreover, there exists an one-one correspondence a—^v between the set of 
all measures cr onZ and the set 3 of all G-invariant measures v on (X, (B) 
such that for all AÇz.($> 

v{A) = fe(A)Me). 

Further if (X, (B, G) is a standard G-space then 8 is a standard Borel 
space. 

When X is a separable metric space and (B is the class of Borel 
subsets of X we shall say that an x G J is regular if there exists an 
invariant set E and an ergodic measure e such that (i) x £ E , (ii) for 
any ergodic measure e', e'(E) = l or 0 according as e'—e or ef ^e, 
(iii) e(W)>0 for each open set W containing x. 

THEOREM 5. If X is a separable metric space and (B is the class of 
Borel subsets of X and if (X, (B, G) is standard, then we can choose 
iViG3l such that each x(~X — Ni is regular. 

One can exhibit a wide class of situations in which our theory has 
content. Let F be a compact metric space and 6 the class of Borel 
subsets of F. Let G be a countable group. We write YG for the space 
of all functions y from G to F and <5G for the smallest <r-algebra of 
subsets of Y G with respect to which the maps y—>y(g) are measurable 
for each g EG. Under the product topology YG is a compact metric 
space and C(? is the class of Borel subsets of F#. For any g(~G and 
y G Y G we define ag(y)(E. YG by <xg(y)(h)=y(hg). Then aQ is a homeo-
morphism of Y G and ( F G , GG, G) is a standard G-space. I t can be 
easily shown tha t 3, and a fortiori 8, are nonempty. I t may also be 
remarked tha t if X is any compact metric space and G a suitably 
restricted countable group of homeomorphisms of X, one can assert 
the existence of invariant measures [7], 

As for counterexamples we have 

THEOREM 6. For any infinite countable G there are countably gener-
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ated G-spaces (X, (B, G) such that there exist continuum many G-invari-
ant measures but no G-ergodic measures. 

REMARKS. (1) If X is a compact metric space and G is a countable 
group of homeomorphisms of X, the representation given in Theorem 4 
is an immediate consequence of the theorem of Choquet [4]. I t may 
be remarked tha t in this case one need not even assume that G is 
countable. But when G is uncountable, an example due to Kolmog-
oroff [7] indicates that the decomposition theory outlined in Theo­
rem 3 and its corollary may not obtain ; even the weaker Theorem 7 
may fail to be valid. 

(2) Let (F , 6) be a Borel space and (X, (B) the cartesian product 
of countably many copies of (F , 6). We regard X as the space of 
functions x from {1, 2, • • • } into F and for any permutation g of the 
integers {l , 2, • • • } we define <xg\x-*xr by setting x((n) = x(g~l(n)) 
for n = l, 2, • • • . When (F , 6) is analytic and G is the group of all 
g which move only finitely many integers, Theorem 4 can be applied 
to (X, (B, G) and contains essentially the results of De Finetti [5] 
and Hewitt-Savage [9]. 

4. I t may not be without interest to make a few remarks on a way 
of reformulating the problem of representing invariant measures as 
integrals of ergodic measures which applies to all Borel spaces. Let G 
be countable and (X, (B, G) a G-space. A <r-algebra £>£(B is said to be 
of type (R) if (i) Every set in 2) is invariant i.e. 2)C(B, (ii) if ^4G(B 
there exists a set BG 3D such that A A B = (A —B)U (B - A) &&, 
(iii) if vi and V2 are two invariant measures such that vi(A) = v2(A) for 
all A G 2D, then v\ = ^2. Obviously if there exists a 2) of type (R) then 
(B is itself of type (R). 

THEOREM 7. If G is countable, then f or any Borel space (X, (B, G), 
(B is of type (R). If (X, (B) is countably generated (respectively standard, 
analytic) there exist countably generated (respectively standard, analytic) 
a-algebras of type (R). 

We shall say that a G-space (Xy (B, G) has sufficiently many ergodic 
measures if for any invariant set A G CB, ^(^4) = 0 for all invariant meas­
ures v if and only if e(A)—0 for all ergodic e. Clearly any analytic 
G-space has sufficiently many ergodic measures. 

THEOREM 8. Let G be a countable group and (X, (B, G) a G-space. 
Then given any measure a on (Xy (B) such that <r(N)~Q for all JVG^l 
there exists a unique invariant measure v on (X, (B) such that v(A) 
= cr(A) for all ^4G(B. Moreover, in order that every invariant measure 
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be expressible as a unique integral of ergodic measures it is necessary 
and sufficient that (X, (B, G) have sufficiently many ergodic measures. 

The writer wishes to thank Dr. R. Ranga Rao, Dr. R. Sacksteder 
and Dr. H. Teicher for several interesting discussions on the circle 
of ideas around which this note is centered. 

Added in Proof. Since this note was submitted the author has ex­
tended the present results to the case of Borel G-spaces, G a separable 
locally compact group; details will be given in the publication men­
tioned a t the beginning. 
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