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A sequence of events {^4n}r is mixing if for each event M,P{AnM) 
— P(i4 n )P(M)-»0; if it is also assumed that P(An)->a, 0 £ £ a ^ l , 
{An} is called mixing with density a. A sequence of events {An} is 
zero-one if its tail is trivial; semi-zero-one if every subsequence of 
{An} admits a zero-one subsequence. 

THEOREM 1. A sequence of events is mixing if and only if it is semi-
zero-one. 

OUTLINE OF PROOF. Denote by (&n, (B„, 6», respectively, the cr-
fields generated by the event Ant by the events A\y • • • , An, and by 
the events An, An+i, • • • ; C = 0*Cn is the tail of the sequence {-4n}. 
If {An} is zero-one, then for every bounded random variable X 
E(X/Qn)—^E(X) with probability one and in L\ mean. One shows 
that if P(An)~»a, 0 < a < l , then {An} is mixing if and only if, for 
each bounded random variable Xy E(X/dn)—>E(X) in L\ mean ("in 
L\ mean" may here be replaced by "in probability" or by "uniformly 
except on a null event"). Hence a zero-one sequence, and also a semi-
zero-one sequence, will be mixing. Now denote by Av the event A 
or its complement and by I A the characteristic function of A. Let 
{An} be a sequence such that all events A \ • • • Av

nt n—l>2, • • • , are 
not null and let Q be the independent probability measure on Ci with 
Q(An)=a, tt=l, 2, • • • , 0 < a < l . Set 

P(A\ • • • Al) 
(1) Xn = ^ / ^ . . . ^ ^ _ _ _ , n = 1, 2, . • • , 

where the summation extends over all events A\ • • • An of (Bn. It is 
shown that every sequence of events mixing with density a admits a 
subsequence {An} such that the Xn ' s defined by (1) are uniformly 
integrable with respect to the measure Q (even uniformly bounded 
by 1 — e, l + € where e is arbitrarily small). Doob's discussion [l, pp. 
343 ff. ] shows that P is absolutely continuous with respect to Q on 
d ; by Kolmogorov's zero-one law {An} is Q zero-one, hence {An} is 
also P zero-one. I t follows that a mixing sequence is semi-zero-one, 

1 This work was supported by the National Science Foundation Grant NSF 
G-14446. 
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unless it is mixing with density zero or one in which case one shows 
the existence of a zero-one subsequence by a direct argument. 

From Theorem 1, one obtains that Kolmogorov automorphisms 
are mixing in all degrees [cf. Rokhlin 2, p. 14]. In probabilistic formu­
lation: discrete-parameter stationary stochastic processes with 
trivial tail are mixing in all degrees. (The tail of a process 
is the cr-field flu*, <Bn where 6W is generated by • • • Xn-i, Xn.) Via 
distribution functions Theorem 1 may also be applied to processes 
not necessarily stationary. A sequence of random variables {Xn} * is 
called mixing if for some dense set D on the real line R the sequence 
of events {^4n(;y)} is mixing for each y (ED, where An{y) is denned 
on R by 

An(y) = [Xn<y], » = 1, 2, • • • . 

If {;4w(;y)} is mixing with density 7(y) for yÇzD, then F determines 
a distribution function F defined on R and P(An(y)) converges to 
F(y) on the continuity set of F(y) ; the sequence of random variables 
\Xn) is then called mixing with the limiting distribution function 
F(y); this last notion was introduced by Rényi [3]. I t follows from 
Theorem 1 that if a sequence of random variables {Xn} is semi-zero-
one, i.e. if every subsequence contains a subsequence with trivial tail, 
then {Xn} is mixing. I t is further shown under rather weak assump­
tions that mixing is invariant under change of measure. A probability 
measure Q is semicontinuous with respect to P on a sequence of ran­
dom variables {Xn} if every subsequence of {Xn} contains a further 
subsequence { Yn} such that Q is absolutely continuous with respect 
to P on the tail of { Yn}. 

THEOREM 2. Let a sequence of random variables {Xn} be P mixing 
(with a limiting distribution function F(y)). If Q is a probability meas­
ure semicontinuous with respect to P on {Xn}, then the sequence {Xn} 
is Q mixing (with the limiting distribution function F(y)). 

In the proof, the invariance of mixing is obtained from Theorem 1 
while the invariance of the limiting distribution is derived from the 
second theorem of Andersen and Jessen [4]. 

Theorem 2 extends Theorem 2 of Abbot and Blum [5] and certain 
results on invariance of limiting distributions of Rényi and Révész. 
Namely in Theorem 4 of Rényi [3] concerned with sums of inde­
pendent random variables and in Examples 3 and 4 of Rényi and 
Révész [ó] concerned with certain Markov chains, the premises 
may be weakened by assuming semicontinuity of Q with respect to 
P on the studied sequences of averages of random variables, instead 
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of absolute continuity of Q with respect to P on <$; the conclusions 
may be strengthened by asserting Q mixing of these sequences with 
the limiting distribution function F(y), instead of only the con­
vergence of the distribution functions of the averages to F(y). 
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Indeed, the equation can be written PP*(PP*)*u~fy where P is 
Lewy's operator d/dz+iz(d/dt),2 z = x+iy, and the star operation re­
places the coefficients of a differential operator by their complex con­
jugates. Hörmander has shown3 that, whatever be the open set 0, 
there is a function ƒ G CQ (0) such that the equation Pv = ƒ does not 
have any distribution solution »G3D'(Q). 
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