A ZERO-ONE PROPERTY OF MIXING SEQUENCES OF EVENTS¹

BY L. SUCHESTON

Communicated by J. L. Doob, February 27, 1962

A sequence of events $\{A_n\}_1^{\infty}$ is mixing if for each event $M, P(A_nM) - P(A_n)P(M) \rightarrow 0$; if it is also assumed that $P(A_n) \rightarrow \alpha$, $0 \le \alpha \le 1$, $\{A_n\}$ is called mixing with density α . A sequence of events $\{A_n\}$ is zero-one if its tail is trivial; semi-zero-one if every subsequence of $\{A_n\}$ admits a zero-one subsequence.

THEOREM 1. A sequence of events is mixing if and only if it is semizero-one.

OUTLINE OF PROOF. Denote by \mathfrak{A}_n , \mathfrak{G}_n , \mathfrak{C}_n , respectively, the σ -fields generated by the event A_n , by the events A_1, \cdots, A_n , and by the events A_n, A_{n+1}, \cdots ; $\mathfrak{C} = \bigcap_1^\infty \mathfrak{C}_n$ is the tail of the sequence $\{A_n\}$. If $\{A_n\}$ is zero-one, then for every bounded random variable X $E(X/\mathfrak{C}_n) \to E(X)$ with probability one and in L_1 mean. One shows that if $P(A_n) \to \alpha$, $0 < \alpha < 1$, then $\{A_n\}$ is mixing if and only if, for each bounded random variable X, $E(X/\mathfrak{C}_n) \to E(X)$ in L_1 mean ("in L_1 mean" may here be replaced by "in probability" or by "uniformly except on a null event"). Hence a zero-one sequence, and also a semi-zero-one sequence, will be mixing. Now denote by A^n the event A or its complement and by A^n the characteristic function of A. Let $\{A_n\}$ be a sequence such that all events $A_1^n \to A_n^n$, $n=1,2,\cdots$, are not null and let $A_n \to A_n^n$ be the independent probability measure on $A_n \to A_n^n$ with $A_n \to A_n^n$ is $A_n \to A_n^n$, $A_n \to A_n^n$.

(1)
$$X_{n} = \sum I_{A_{1}^{v} \dots A_{n}^{v}} \frac{P(A_{1}^{v} \dots A_{n}^{v})}{O(A_{1}^{v} \dots A_{n}^{v})}, \qquad n = 1, 2, \dots,$$

where the summation extends over all events $A_1^{\bullet} \cdot \cdot \cdot A_n^{\bullet}$ of \mathfrak{G}_n . It is shown that every sequence of events mixing with density α admits a subsequence $\{A_n\}$ such that the X_n 's defined by (1) are uniformly integrable with respect to the measure Q (even uniformly bounded by $1-\epsilon$, $1+\epsilon$ where ϵ is arbitrarily small). Doob's discussion [1, pp. 343 ff.] shows that P is absolutely continuous with respect to Q on \mathfrak{C}_1 ; by Kolmogorov's zero-one law $\{A_n\}$ is Q zero-one, hence $\{A_n\}$ is also P zero-one. It follows that a mixing sequence is semi-zero-one,

¹ This work was supported by the National Science Foundation Grant NSF G-14446.

unless it is mixing with density zero or one in which case one shows the existence of a zero-one subsequence by a direct argument.

From Theorem 1, one obtains that Kolmogorov automorphisms are mixing in all degrees [cf. Rokhlin 2, p. 14]. In probabilistic formulation: discrete-parameter stationary stochastic processes with trivial tail are mixing in all degrees. (The tail of a process $\{X_n\}_{-\infty}^{\infty}$ is the σ -field $\bigcap_{-\infty}^{\infty} \mathcal{C}_n$ where \mathcal{C}_n is generated by $\cdots X_{n-1}, X_n$.) Via distribution functions Theorem 1 may also be applied to processes not necessarily stationary. A sequence of random variables $\{X_n\}_1^{\infty}$ is called *mixing* if for some dense set D on the real line R the sequence of events $\{A_n(y)\}$ is mixing for each $y \in D$, where $A_n(y)$ is defined on R by

$$A_n(y) = [X_n < y], \qquad n = 1, 2, \cdots.$$

If $\{A_n(y)\}$ is mixing with density $\overline{F}(y)$ for $y \in D$, then \overline{F} determines a distribution function F defined on R and $P(A_n(y))$ converges to F(y) on the continuity set of F(y); the sequence of random variables $\{X_n\}$ is then called mixing with the limiting distribution function F(y); this last notion was introduced by Rényi [3]. It follows from Theorem 1 that if a sequence of random variables $\{X_n\}$ is semi-zeroone, i.e. if every subsequence contains a subsequence with trivial tail, then $\{X_n\}$ is mixing. It is further shown under rather weak assumptions that mixing is invariant under change of measure. A probability measure Q is semicontinuous with respect to P on a sequence of random variables $\{X_n\}$ if every subsequence of $\{X_n\}$ contains a further subsequence $\{Y_n\}$ such that Q is absolutely continuous with respect to P on the tail of $\{Y_n\}$.

THEOREM 2. Let a sequence of random variables $\{X_n\}$ be P mixing (with a limiting distribution function F(y)). If Q is a probability measure semicontinuous with respect to P on $\{X_n\}$, then the sequence $\{X_n\}$ is Q mixing (with the limiting distribution function F(y)).

In the proof, the invariance of mixing is obtained from Theorem 1 while the invariance of the limiting distribution is derived from the second theorem of Andersen and Jessen [4].

Theorem 2 extends Theorem 2 of Abbot and Blum [5] and certain results on invariance of limiting distributions of Rényi and Révész. Namely in Theorem 4 of Rényi [3] concerned with sums of independent random variables and in Examples 3 and 4 of Rényi and Révész [6] concerned with certain Markov chains, the premises may be weakened by assuming semicontinuity of Q with respect to P on the studied sequences of averages of random variables, instead

of absolute continuity of Q with respect to P on α ; the conclusions may be strengthened by asserting Q mixing of these sequences with the limiting distribution function F(y), instead of only the convergence of the distribution functions of the averages to F(y).

BIBLIOGRAPHY

- 1. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
- 2. V. A. Rokhlin, New progress in the theory of transformations with invariant measure, Uspehi Mat. Nauk (1960), English translation published by the London Math. Soc.
- 3. A. Rényi, On mixing sequences of sets, Acta Math. Acad. Sci. Hungar. 9 (1958), 215-228.
- 4. E. S. Andersen and B. Jessen, Some limit theorems on set-functions, Danske Vid. Selsk. Mat.-Fys. Medd. 25 (1948).
- 5. J. H. Abbott and R. J. Blum, On a theorem of Rényi concerning mixing sequences of sets, Ann. Math. Statist. 32 (1961), 257-260.
- 6. A. Rényi and P. Révész, On mixing sequences of random variables, Acta Math. Acad. Sci. Hungar. 9 (1958), 389-393.

University of Wisconsin, Milwaukee

THE EQUATION $(\partial^2/\partial x^2 + \partial^2/\partial y^2 + (x^2 + y^2)(\partial/\partial t))^2 u + \partial^2 u/\partial t^2 = f$, WITH REAL COEFFICIENTS, IS "WITHOUT SOLUTIONS"

BY FRANÇOIS TREVES1

Communicated by Lipman Bers, February 20, 1962

Indeed, the equation can be written $PP^*(PP^*)^*u=f$, where P is Lewy's operator $\partial/\partial\bar{z}+iz(\partial/\partial t)$, z=x+iy, and the star operation replaces the coefficients of a differential operator by their complex conjugates. Hörmander has shown³ that, whatever be the open set Ω , there is a function $f \in C_0^{\infty}(\Omega)$ such that the equation Pv=f does not have any distribution solution $v \in \mathfrak{D}'(\Omega)$.

YESHIVA UNIVERSITY

¹ Sloan fellow. Yeshiva University, New York City.

² H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155.

³ L. Hörmander, Differential equations without solutions, Math. Ann. 140 (1960), 169.