
RECENT PROGRESS IN ERGODIC THEORY1 

PAUL R. HALMOS 

Prologue. In 1948, at the November meeting of the Society in 
Chicago, I delivered an address entitled Measurable transformations. 
In the twelve years that have elapsed since then, ergodic theory (of 
which the theory of measurable transformations is the greatest part) 
has been spectacularly active. The purpose of today's address is to 
report some of the developments of those twelve years ; its title might 
well have been Measurable transformations revisited. The subjects I 
chose for this purpose are: some new ergodic theorems, information 
theory and its connection with ergodic theory, and the problem of in­
variant measure. 

The stage on which most ergodic performances take place is a meas­
ure space consisting of a set X and of a measure JJL denned on a speci­
fied cr-field of measurable subsets of X. At the most trivial level X 
consists of a finite number of points, every subset of X is measurable, 
and jit is a mass distribution on X (which may or may not be uniform). 
At a more useful and typical level X is the real line ( - c o , + <*>), or 
the unit interval [0, l ] , measurability in either case is interpreted 
in the sense of Borel, and ju is Lebesgue measure. Another possibility 
is to consider a measure space having a finite number of points with 
total measure 1 and to let X be the Cartesian product of a countably 
infinite number of copies of that space with itself; measurability and 
measure in this case are interpreted in the customary sense appropri­
ate to product spaces. This latter example is easily seen to be measure-
theoretically isomorphic to the unit interval, as also are most of the 
normalized measure spaces (measure spaces with total measure 1) 
that ever occur in honest analysis. The only measure spaces I shall 
consider in this report are the ones isomorphic to one of the spaces 
already mentioned. The expert will know just how little generality is 
lost thereby, and the casual passer-by, quite properly, will not care. 

A transformation T from a measure space X into a measure space 
Y is called measurable if the inverse image T~lE (in X) of each meas­
urable set E (in F) is again a measurable set. A measurable trans­
formation T is measure-preserving if, for every measurable set £ , the 
sets E and T~lE have the same measure. A measurable (but not 
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necessarily measure-preserving) transformation T: X—>Fis invertible 
if there exists a (necessarily unique) measurable transformation 
T~l: Y—>X such that each of the composites T~XT and TT~l is 
equal to the identity on its domain. If T is measure-preserving and 
invertible, then T~x is measure-preserving also. Most of the trans­
formations to be considered in this report are transformations from 
a measure space X into itself, or, in the customary phrase, trans­
formations on X. 

A measure-preserving transformation on a finite set with uniform 
distribution is simply a permutation. A familiar example of a meas­
ure-preserving transformation on the real line is given by a transla­
tion, Tx = x+c; the same equation, interpreted modulo 1, gives an 
interesting example of a measure-preserving transformation on the 
unit interval. An important transformation on the product of counta-
bly many copies of a finite normalized measure space is obtained as 
follows. Let the index set used in the formation of the Cartesian 
product be the set of all integers (positive, negative, or zero), so that 
a point x of the space X under consideration is a two-way infinite 
sequence (xn); for each x in X let Tx be the sequence y such that 
yn = xn+i. Any transformation defined this way is called a shift, or, 
more precisely, the shift based on the given finite measure space. In 
case that space has k points and the original measure on it is the uni­
form distribution, the resulting shift is completely determined by the 
number k. The shift so determined is called the k-shift; in what follows 
it will be denoted by S*. 

Ergodic theorems. Every transformation T of a set X into itself 
induces a functional operator U that acts on functions whose domain 
is X ; by definition (Uf)(x) =f(Tx). The transformations that always 
have been and still are of central interest in ergodic theory are the 
measure-preserving transformations. The restriction to any of the 
Lebesgue spaces Lp of the functional operator U associated with a 
measure-preserving transformation T turns out to be an isometry; 
the preservation of norm is an easy consequence of the preservation 
of measure. If Tis invertible, then U is invertible. On L^ the pleasant-
est of all function spaces, an invertible isometry is a unitary operator, 
to which the extensive and powerful spectral theory can be applied. 
The first result of such an application is von Neumann's mean ergodic 
theorem; it studies the norm convergence in L2 of averages such as 
(1/n) ^t-o U*f. The methods of the study extend immediately to all 
unitary operators on L2, including the ones that are not induced by 
measure-preserving transformations. This fact motivated the subse-
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quent extension of the theory to wider and wider classes of trans­
formations on wider and wider classes of Banach spaces. 

The finite special case of von Neumann's mean ergodic theorem is 
amusing and instructive. If, for instance, X = {1, 2, 3} , then L2 (over 
X) is three-dimensional Euclidean space; if T is the cyclic permuta­
tion (1, 2, 3), then the induced unitary operator U is the one whose 
matrix (with respect to the usual and obvious basis) is 

[0 1 0] 
0 0 1 . 

li o oj 
The original mean ergodic theorem asserts the convergence of the 
averages of the powers of such permutation matrices. The first and 
most natural generalization is to the convergence of the averages of 
the powers of arbitrary unitary matrices. 

The so-called individual ergodic theorem of G. D. Birkhoff has 
the function space L\ for its natural habitat; the assertion is that for 
every integrable function ƒ the averages (1/n) X)?-o U*f converge 
almost everywhere. I t is natural to try to extend this result to func­
tional operators that may not be induced by measure-preserving 
transformations. The spirit of the general mean ergodic theorems 
and the spirit of the generalization desired here are quite different. 
The former have a wider domain of applicability (Banach spaces) 
with a necessarily weaker conclusion (norm convergence) ; the latter 
has a sharp conclusion (almost everywhere convergence) for a neces­
sarily more special structure (the function space Li). Recent progress 
of the latter kind (based on the pioneering work of Doob, Kakutani, 
and others) was made by Eberhard Hopf. He assumes that fi(X) < <x>, 
and that U is a positive linear operator on Li subject to the following 
two conditions: 

ƒ (Uf)d,x = ƒ fi» 

for all ƒ in Li, and 
Z71 = 1. 

(Positiveness means, of course, that if ƒ is in L\ and / ^ 0 a.e., then 
Uf^O a.e.) The conclusion is that for each ƒ in L% the averages 
(XIn) ^2tIo Ulf converge almost everywhere. I t is obvious that if U 
is the functional operator induced by a measure-preserving trans­
formation, then Hopf s conditions are satisfied; the assertion is, in 
other words, a bona fide generalization of the classical individual 
ergodic theorem. 
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A glance a t the finite special case will clarify the meaning of Hopf's 
conditions. In the finite case, the linear transformation U correspond­
ing to a matrix (w»y) is positive if and only if the entries of the matrix 
are positive (wtyèO). I t is a simple and pleasant exercise to prove 
that, in the finite case, the first Hopf condition requires exactly that 
each column sum ( ^ t - ui}) be equal to 1, and the second one that each 
row sum ( ^ y ui3) be equal to 1. The extent to which Hopf general­
izes Birkhoff is now clear. Birkhoff treats matrices with exactly one 
1 in each row and in each column, all other entries being 0, and Hopf 
treats matrices with positive entries whose row sums and column 
sums are equal to unity. 

The theorem of Hopf was generalized by Dunford and Schwartz in 
one direction and by Chacon and Ornstein in another. The assump­
tion that/*(X) < oo is absent from both generalizations. The Dunford-
Schwartz assumptions are that 

| | f f | | i S 1 and \\u\\«£ 1. 

The first of these conditions is clear. I t requires that the norm of the 
operator U on Lx do not exceed 1, i.e., that ƒ | Uf\ dp ^ ƒ | ƒ | dfx for every 
integrable function/. The second condition requires that U map each 
essentially bounded function in L\ onto an essentially bounded func­
tion, without increasing the essential supremum. It is noteworthy 
that Dunford and Schwartz do not assume that U is positive. The 
conclusion is, as before, that for each ƒ in L\ (or, for that matter, in 
any Lp, with l^*p<x>) the averages (1/n) S?«o Ulf are almost 
everywhere convergent. 

The L\ norm of a finite matrix (uij) is the largest of the absolute 
column sums (23*lw*ï | ) an<^ the L^ norm is the largest of the ab­
solute row sums ( 2 / | u^\ ). This observation indicates the extent to 
which the Dunford-Schwartz result generalizes Hopf s : positiveness 
is dropped and the equations involving column sums and row sums 
become inequalities. 

Chacon and Ornstein assume, as Hopf does, that U is a positive 
linear operator on Zi, and they assume, as Dunford and Schwartz do, 
that || £ / | | i ^ l . Instead of adding further assumptions, they alter the 
form of the conclusion. The new conclusion asserts that if ƒ and g 
are in L\ and if g^O almost everywhere, then the ratios 

n—l / n—1 

E u'f/ E u*g 
converge at almost every one of the points at which the denomina­
tor is ultimately different from zero. The Chacon-Ornstein result 
implies, in particular, tha t if for some g (for instance g = l) the 
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averages (1/n) ]C?=o Ulg converge to 1 almost everywhere, then the 
averages (1/n) ^ÏIQ Ulf converge almost everywhere; this exhibits 
the extent to which their result generalizes Hopf's. 

In the finite case, the coordinates of the vector Unl are the row 
sums of the matrix corresponding to Un. Accordingly, a special case 
of the Chacon-Ornstein theorem applies to matrices with positive 
entries, column sums equal to 1, and row sums converging to 1 in the 
sense of Cesàro. The last qualification replaces Hopf's requirement 
that the column sums be equal to 1. 

Information theory. If JJL(X) = 1, the measurable subsets of the space 
X may be viewed as the possible outcomes of some random process, 
and, from this point of view, the measure of a measurable set E be­
comes the probability that a randomly chosen point of X belong to E. 
It is well known that all the intuitive concepts of probability theory 
can be given a rigorous description in measure-theoretic language. 
Thus, for instance, an experiment with a finite number of possible 
outcomes is (corresponds to) a finite measurable partition 2t. (This 
means, of course, a finite disjoint collection of measurable sets whose 
union is X.) 

How much information does an experimenter obtain from an ex­
periment? If, to be slightly more precise, the random point of X that 
the experiment specifies belongs to the measurable set E, how much 
more is known after that specification than before? There are several 
heuristic arguments that tend to show that a reasonable measure of 
the quantity of information is — logjtf(E). I t follows that associated 
with each finite measurable partition §1 there is a simple function 
7(21), which may be called the information conveyed by the perform­
ance of the experiment 5Ï; the value of /(2Ï) throughout each set E of 
His - log /* (£ ) . 

The formation of the successive iterates of some particular meas­
ure-preserving transformation T may be regarded as the action of the 
passage of time observed at equally spaced intervals, say once a day. 
Thus if "xeE" is read as "x belongs to E today," then "TxeE" 
may be read as "x will belong to E tomorrow." Since "Tx e E" means 
the same as "x e T~lE" it follows that if the mathematical model of 
some event today is the measurable set £ , then the model of the same 
event tomorrow will be the measurable set T~lE. 

Suppose now that 2ïo is an experiment (with a finite number of pos­
sible outcomes) and suppose that the experiment Sti consists of the 
performance of Slo both today and tomorrow. In mathematical lan­
guage, the partition Sti is the least common refinement of Slo and 
T~~l%Qy where the sets of r ^ H o are the sets of the form T~lE with E 
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in Slo- In the standard concise lattice-theoretic notation Hi = SIo v r_12lo. 
If, more generally, 

ÏU = 2ïo v • • • v r - ^ S t o , n = 1, 2, 3, • • • , 

then 2tn is (corresponds to) the experiment that consists of performing 
2to for n successive days starting today. 

What can be said about the average amount of information ob­
tained in a day by repeated performances of 2ïo? In mathematical 
terms the question is one about the asymptotic behavior of the se­
quence of functions (1/w) 7(2In). The question appears to call for, and 
the answer is, a theorem of ergodic type; the proof, indeed, makes use 
of the classical individual ergodic theorem. Motivated by Shannon's 
work on Markov chains, McMillan proved that the sequence 
(l/»)/(2tw) converges in the mean of order 1, and, later, Breiman 
asserted that it converges almost everywhere. McMillan and Brei­
man treat ergodic transformations only; an elegant simple proof of 
the general theorem (whose spirit is substantially the same as that of 
Breiman's proof) was recently given by Alexandra Ionescu-Tulcea. 
(Recall tha t T is ergodic in case, for each measurable set E that is in­
variant under T, either /*(£) = 0 or ii(X — E) = 0.) 

In the present state of science the information ergodic theorem of 
Shannon-McMillan-Breiman looks more like a special consequence of 
ergodic methods and results than like a statement of comparable 
generality with the ergodic theorem. The special theorem has, how­
ever, some powerful applications, and, I think, a promising future. 

The conjugacy problem. The main outstanding problem of ergodic 
theory was (and is) to find usable necessary and sufficient conditions 
for the conjugacy of two transformations. To say that two measure-
preserving transformations T\ and T2 are conjugate means that there 
exists an invertible measure-preserving transformation S such that 
ST\ = T%S modulo sets of measure zero. A long outstanding test prob­
lem was the conjugacy of the 2-shift and the 3-shift (defined above, 
in the prologue). The first decisive recent step along these lines was 
taken by Kolmogorov and the next one by Sinai. The conclusion is 
that if n^m, then Sn and Sm are not conjugate. 

The Kolmogorov-Sinai method is to introduce a new conjugacy 
invariant h*(T) (called entropy) associated with a measure-preserving 
transformation T on a normalized measure space. The invariant 
h*(T) can be computed in many cases, and, in particular, it turns out 
tha t h*(Sn) = log ». 

The function h* is defined in two steps, via two other functions H 
and h (both of which are also called entropy). The domain of the first 
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auxiliary function H consists of finite measurable partitions. If 2t is 
such a partition, then, by definition, i î (2t )= — ^,BtZfi(E) log/*(£), 
or, in terms of the notation used before, 77(21) =/7(2l)d/z. The number 
77(21) is, intuitively speaking, the average amount of information 
obtainable from one performance of the experiment 21. 

I t is a trivial consequence of McMillan's theorem that, for each 
finite measurable partition SI the sequence of numbers 

— H{% v . . . v r-<»-i>«) 
n 

converges to a finite limit, say h(T, 21). The number h(T, 21) is, intui­
tively speaking, the average amount of information obtainable per 
day from repeated performances of the experiment. 

Now that h has been defined, the definition of h* is a simple matter; 
write h*(T) =supa h(T, 21), where the supremum is extended over all 
finite measurable partitions 21. Intuitively speaking, the entropy 
h*(T) is the greatest quantity of information obtainable about the 
universe per day by repeated performances of experiments with a 
finite (but possibly unbounded) number of possible outcomes. The 
value of h*(T) is a real number between 0 and <*> ; both extremes can 
occur. 

The computation of the supremum h*(T) is often made easy by a 
penetrating result of Sinai. The assertion is that if T is invertible and 
if 21 is a finite measurable partition such that every measurable set 
belongs to the <r-field generated by the elements of the partitions 
7^21(^ = 0, ± 1 , ± 2 , • • • ), then the supremum h*(T) is attained, and, 
in fact, it is equal to h(T, 2Ï). In intuitive language: if knowledge of 
the entire history of performances of the experiment 21 (past, present, 
and future) entails knowledge of the exact state of the universe, then 
the average amount of information obtainable per day by repeated 
performances of 21 is as large as it can be for any experiment. 

Having shown that the concept of entropy can be used to solve a 
problem of ergodic theory, the Russian school is proceeding with en­
thusiasm to build a theory around the theorem. Sample question: 
what is the relation between the entropy of T and the spectral proper­
ties of the induced unitary operator U? Partial answer by Rokhlin: 
if U has pure point spectrum, then h*(T) = 0. Sample question: if T 
is an automorphism of a compact group, what can be said about the 
entropy of 77 Partial answer by Sinai: if T is an automorphism of 
the torus, then T is in a sense the dual of a unimodular matrix M; if 
a and ft are the proper values of M, with | a | > | j 3 | , then h*(T) 
= log \a\. Partial answer by Abramov: if T is an automorphism of 
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the character group of the additive group of rational numbers, then 
T is in a sense the dual of a rational multiplier r\ if a and j3 are (not 
necessarily respectively) the numerator and denominator of r in low­
est form, with | a | > | j 8 | , then h*(T)=log \a\. 

In the early days of ergodic theory it was possible to conjecture that 
two invertible measure-preserving transformations on normalized 
measure spaces are conjugate if and only if the functional operators 
they induce are unitarily equivalent. That conjecture died long ago; 
the Kolmogorov-Sinai result buries it forever. The answer to the 
following question is, however, not at all obvious. If two invertible 
measure-preserving transformations on normalized measure spaces 
induce unitarily equivalent functional operators and if they have the 
same entropy, does it follow that they are conjugate? (This question 
was raised by Fomin.) I t is instructive to examine it in the light of the 
following specific subquestion. If two shifts based on finite sets with 
not necessarily uniform distributions have the same entropy, does 
it follow that they are conjugate? (The subquestion was raised by 
Billingsley.) An affirmative answer to Fomin's question would imply 
an affirmative answer to Billingsley's. (The functional operators in­
duced by any two shifts are unitarily equivalent.) Following Billings­
ley, I conjecture that the truth is the other way around; the answer 
to Billingsley's question is probably no. 

Non-invariant measures. The preceding considerations had to do 
mostly with measure-preserving transformations. How much loss of 
generality does this involve? How likely is a transformation to pre­
serve some measure? There are several possible ways to formulate a 
precise question along these lines; experimentation has revealed that 
the most fruitful formulation runs as follows. Suppose that T is an 
invertible measurable transformation on, say, the unit interval (there 
is no essential loss of generality so far) such that if E is a measurable 
set of measure zero, then both T~lE and TE have measure zero; does 
there exist a finite or possibly cr-finite measure v equivalent to n and 
invariant under 7? (Equivalence here means that \x and v vanish on 
the same sets.) Several solutions have been offered for the problem of 
finite invariant measure in the course of the years, and, incidentally, 
it has been known for some time that the solution of that problem is 
not always affirmative. 

The most recent solution of the problem of finite invariant measure 
is that of Hajian and Kakutani. The condition in terms of which that 
solution is stated is an elegant generalization of a well known condi­
tion. A set £ is a wandering set (for a transformation T) if the sets 
E, T~XE} T~2E, • • • are pairwise disjoint, and the transformation T 
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is conservative if every measurable wandering set has measure zero. 
These definitions are old; the new concepts of Hajian and Kakutani 
are defined as follows. A set £ is a weakly wandering set (for T) if the 
sequence of sets £ , T_ 1E, T~2E, • • • has an infinite pairwise disjoint 
subsequence, and T is weakly conservative if every measurable weakly 
wandering set has measure zero. (Hajian and Kakutani do not ac­
tually use the latter term, but it seems natural to do so.) The new 
result is that a transformation T (satisfying the conditions stated be­
fore) preserves some finite invariant measure equivalent to the given 
one if and only if it is weakly conservative. 

The general problem of (cr-finite) invariant measure has stood un­
solved for a long time. There were, to be sure, some known necessary 
and sufficient conditions, but none of them was usable. In particular, 
for all anyone knew, the solution of the problem was always affirma­
tive. The solution, when it finally came, turned out to be negative; 
Ornstein constructed an ingenious example of a transformation that 
satisfies all the stated conditions but does not preserve any equivalent 
cr-finite measure. 

Ornstein defines his transformation on the unit interval; there is 
some value in an alternative approach via another measure space, 
which, however, is easily shown to be isomorphic to the interval. 
The construction uses a sequence of integers ra0, Wi, m2, • • • , such 
that mjfc> 1 for all k> and such that the quotients rnk+i/mo • • • nth are 
unbounded. (Example: m* = 2 3 . In this case the quotients even tend 
to oo with k.) These conditions are sufficient to guarantee the truth 
of the assertions that follow. Since, however, those assertions are not 
proved here, it is not necessary to keep the exact form of the condi­
tions in mind. 

Let Xk be the additive group of integers modulo mk (& = 0 ,1 , 2, • • • ) , 
and let p,k be the (non-uniform) measure in Xk that assigns the weight 
1/2 to 0 and distributes the weight 1/2 uniformly among the remain­
ing points. Let X be the Cartesian product of the spaces Xk and let 
fi be the product of the measures ju*. For an intuitive insight into the 
role that the elements of X play, think of them as generalized (in­
finite) integers written in a generalized (infinite) decimal system. An 
ordinary non-negative integer x has an expansion 

* = xo + xv 10 + x2' 102 + xv 103 + • • • , 

where the digits xk can take the values 0, 1, • • • , 9, and where Xk^O 
for finitely many values of k only. The generalization replaces the 
&th 10 by ntkt and, at the same time, removes the finitely-non-zero 
restriction. The result is the consideration of formally infinite expan-
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sions of the form 

Xo + xi-nto + x2'fnomi + Xi-m<m\w<i + • • • , 

where the digits Xk can take the values 0, 1, • • • , ra*— 1. 
What happens to the sequence (x0, X\, X2, * * • ) of decimal digits of 

an integer x when x is replaced by x + 1? The answer is that, usually, 
Xo is replaced by #o + l. If, however, x0 = 9, then XQ is replaced by 0, 
and Xi is replaced by X\ + l ("carry one")—unless, tha t is, #i = 9 also, 
in which case both xQ and Xi are replaced by 0, and x2 is replaced 
by x2 + l—unless, etc., etc. In these terms it is easy to define the 
promised transformation T on X: it is the obvious generalization of 
adding 1. If 

x = Oo, xh x2, - • • ) 

is an element of x, and if Xo^mo— 1, then 

Tx = (XQ + 1, xi, x2 • • • ). 

If, however, x0 = mo — 1, and if, in fact, è is the smallest index such 
that Xk+i 7e mk+1 — 1, then 

TX = (0, • • • , 0, #AH-1 + 1, X/fc+2, • • • ), 

where the number of initial zeros is exactly fe + 1 (one each for 
Xo, • • • , Xk). If Xk = nik — 1 for all fe, then 

r* = (o, o, o, • • • ). 
Intuitively X may be thought of as an infinite adding machine; the 
action of T on the numbers in X is simply to add 1. The proof that 
T is not even potentially measure-preserving is a complicated com­
binatorial argument. 

Epilogue. Ergodic theory is very much alive these days ; there are 
new results and there are new problems. Now that it is known, for 
instance, that there exist measure-theoretically interesting trans­
formations with no invariant measure of the proper sort, the con-
jugacy problem for such transformations and the applicability of the 
concept of entropy to them become worthy of consideration. The 
same thing is true for the operators on L\ that enter into the general­
ized ergodic theorems discussed above. Other old results and tech­
niques also deserve to be extended to the newly important transfor­
mations and operators ; this is especially true of the topological studies 
sometimes pursued under the name of approximation theorems. 

Even according to the narrowest known definition of ergodic theory 
there are some parts of the subject that were not mentioned in this 
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report. There has been, for instance, some recent progress in the 
theory of conservative transformations and in the spectral theory of 
measure-preserving transformations. The latter subject, especially, 
constitutes a far from closed chapter. Since, in particular, asymptotic 
results (ergodic theorems) are usually true for both finite and infinite 
measure spaces, it is sometimes tacitly assumed that the same is 
true for spectral results. In fact, however, knowledge of the possible 
spectral behavior of measure-preserving transformations is meager 
for finite measure spaces and almost nil for infinite ones. 

I hope that in the near future, in the course of the next twelve 
years, say, humanity learns sufficiently many new answers to these 
fascinating old questions to warrant another Society address on the 
subject. I should like to hear that address so that I may discover how 
everything came out and who did it. 
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