SYMMETRY IN MEASURE ALGEBRAS¹

BY ARTHUR B. SIMON

Communicated by Walter Rudin, July 4, 1960

It is well known that the measure algebra of a locally compact group G is not symmetric, i.e. the set of Gelfand transforms is not closed under complex conjugation. However, if these transforms are restricted to the character group Γ , they are symmetric. In his paper [1] Rudin asks: Is there a set larger than the closure of Γ on which the transforms are symmetric?

If G is the real line the answer is yes.

Let G be the real line; we consider the algebra M(G) of all regular Borel measures with convolution as multiplication. The maximal ideal space \mathfrak{M} of M(G) is compact and Γ (also the real line) is an open subset of \mathfrak{M} . Let S be the largest subset of \mathfrak{M} on which the Gelfand transforms are closed under conjugation.

Let Q be an independent, compact, perfect set (of Lebesgue measure 0) which supports a positive measure σ whose Fourier-Stieltjes transform vanishes at infinity (see [2]). Without loss of generality we may suppose that the

$$\sup\{ \left| \ \hat{\sigma}(\gamma) \ \right| : \gamma \in \Gamma \} = \sup\left\{ \left| \int_{-\infty}^{\infty} e^{iyx} d\sigma(x) \ \right| : y \in G \right\} = 1.$$

Now let $U = \{h \in \mathfrak{M}: |\hat{\sigma}(h)| < 1/4\}$. Since σ vanishes at infinity the set $A = \Gamma - U$ is compact.

Pick an absolutely continuous measure λ so that $\hat{\lambda} \equiv 1$ on A.

We are now in position to define a member of S which is not in the closure of Γ . We define a function to be identically -1 on all of Q but one point x, and there its value is +1. Since Q is independent we can extend this function to a homomorphism χ_{σ} on G to the circle group; since Q is perfect χ_{σ} is not continuous but, clearly, χ_{σ} is σ -measurable. Now let $H = \{\mu \in M(G) : \chi_{\sigma} \text{ is } \mu$ -measurable $\}$ and let $I = \{\phi \in M(G) : \phi \perp \mu \text{ for every } \mu \in H\}$. Sreider [3] has shown that H is an algebra, I is an ideal and M(G) = H + I (direct sum). Now pick $\chi_0 \in A$ such that $|\hat{\sigma}(\chi_0)| > 3/4$; and define $h_0(\mu) = \hat{\mu}(h_0) = \int \chi_0(x) d\mu_H(x)$, where μ_H is the projection of μ on H. It can be shown that $h_0 \in S$ (since H is self-adjoint) and that $\lambda \in I$ (since χ_{σ} is not continuous); thus if we let W be the neighborhood of h_0 determined by σ , λ , and 1/4, then $W \cap \Gamma = \phi$ and the result is proved.

¹ This research was supported by the Air Force Office of Scientific Research Contract No. 49(638)383.

REMARK. Obviously the more general theorem is true: Let G be a locally compact abelian group. If there is a singular measure μ on G whose (Gelfand) transform vanishes on the boundary of the character group Γ and there exists a noncontinuous character on G which is μ -measurable, then $S \neq \overline{\Gamma}$.

REFERENCES

- 1. Walter Rudin, Measure algebras on abelian groups, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 227-247.
- 2. ——, Fourier-Stieltjes transforms of measures on independent sets, Bull. Amer. Math. Soc. vol. 66 (1960) pp. 199-202.
- 3. Yu. A. Sreider, The structure of maximal ideals in rings of measures with convolution, Amer. Math. Soc. Translations no. 81, Providence, 1953.

NORTHWESTERN UNIVERSITY