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1. Introduction. In this note we consider the solution of the random 
operator equation 

(1) (r(co) - \I)x(u, <a) = y(u, <a) 

when the operator T(<ui) is a random integral operator of the Fred-
holm type on a concrete Banach space of generalized random vari­
ables. In [3] (the proofs will appear in [4]) we announced some re­
sults in the theory of random operator equations ; and we refer to the 
above paper, or to [6] for all definitions. We begin our study of con­
crete random operator equations with the Fedholm integral equations 
for the following reasons: (1) there is a well-developed theory of these 
equations (cf. [ i l ] and [13]), (2) the relationship between these 
equations and Volterra integral equations, algebraic systems of linear 
equations, and Sturm-Liouville systems of differential equations, and 
(3) the widespread occurrence of these equations in mathematical 
physics and other branches of applied mathematics. 

2. The stochastic boundary value problem for integral equations. 
In general, the classical (i.e., deterministic or nonstochastic) boundary 
value problem can be described as follows : Given a functional equa­
tion 

(2) (P(x(u)) = 0 

defined on a domain £7, with boundary F, in ^-dimensional Euclidean, 
space Rky find a function x(u) satisfying Equation (2) in U and taking 
prescribed values on the boundary F; that is limu+UoeF x(u) =7(^0). 
The functional <P in (2) is a mapping of the abstract space of function 
x(u) onto itself. 

However, in many boundary value problems arising in various field 
of applications, the boundary conditions cannot be expressed by a 
single well-determined or known function y(uo) ; hence it is necessary 
to consider this problem within the framework of probability theory, 
and consider a collection or set of functions, say T = {y(u, co), co£fi}, 

1 This research was supported in part by funds provided under Contract No. 
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where o) is an element in some probability space (0, Ct, ju). Therefore, 
in stochastic boundary value problems an event consists of the choice, 
of an element co0G^, with probability JJL(B) = Pr{coo££}, 5 g a , 
which in turn specifies the boundary condition y(u, coo)£r that is to 
be imposed. 

In connection with stochastic boundary value problems for partial 
differential equations, Kampé de Fériet [8] has given a definition of 
a random solution of Equation (2). In order to establish a connection 
between random solutions of Equation (2) (or Equation (1)) and gen­
eralized random variables, we introduce the following definition. Let 
U be a bounded closed subset in Euclidean space 2?* with Lebesgue 
measure ra, (0, ($, ft) a probability space, and (36, 6) a measurable 
space, where 36 is a Banach space of generalized random variables, 
and 6 is a cr-algebra of all Borel subsets of 36. 

DEFINITION. The mapping x(u, o)) of the product space UX& into 
the Banach space X is a random solution of Equation (2) (or Equation 
(1)) corresponding to the random boundary condition 7(co)£T if 

(i) x(u, co) is a generalized random variable with values in 36; 
(ii) for each arbitrary, but fixed, cooGO—A where /z(A) = 0 , the map­

ping {or sample function) x(u, coo)£36 is a solution of Equation (2) 
(of Equation (1)) in U taking the value 7(o?o) on the boundary F; then 
we have (cf. [13, p. 19, Theorem 5]); 

(iii) x(u, co) is ^measurable. 
In view of the above definition, a random solution is a ju-measura-

ble generalized random variable (or random element) with values in 
the Banach space 36 = 36(?7, m); hence the theory of generalized ran­
dom variables developed by O. Hans [l ], E. Mourier [ l0] , and others, 
can be used to investigate the solutions of random boundary value 
problems in Banach spaces. 

In the case of integral equations, as here considered, the choice of 
an element co£0 specifies a fundamental domain DUQU over which 
the integral is defined. Hence the mapping y(co) is a mapping of the 
space of elementary events 0 into the set V of all possible domains 
in U over which the integral can be defined. Hence, the fundamental 
domain Dw is a random set; or in the case of rectangular sets, the end 
points of the interval are ordinary random variables. 

3. Random Fredholm integral equations. Let U be a bounded or 
unbounded interval in Rk (hence we can have Z7=i^)> and let m be 
Lebesgue measure on U. As before, let (Q, 6, p) be a probability 
space; and let (Z,$, 6) be a measurable space, where L$> is the Orlicz 
space L$(U, m). We shall work in Orlicz spaces since much of the 
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recent work in the theory of integral equations (cf. [9] and [13]) has 
been carried out in these spaces. 

The stochastic version of the nonhomogeneous Fredholm integral 
equation of the second kind, i.e. 

(3) f K(l,u)x (u)dm(u^ — Xx(t) = y(t), 

when random boundary conditions are imposed, can be written as 

(4) I K(t,u)x(u,cci)dm(u) — \x(t, co) = y(t,co). 

In Equation (4) the unknown function x(t, co) and the known func­
tion y(t, co) are generalized random variables with values in the 
separable Orlicz space2 L$. (We refer to [l ; 2] or [4] for the definition 
of random variables with values in an Orlicz space.) We shall as­
sume that the known function y(t, co) = y(t) for all co£ö, and that the 
kernel function K(t, u), which is deterministic (i.e., it does not de­
pend on co), is an raX^-measurable function on D^XD». The param­
eter X is an arbitrary complex number. 

We shall also consider the adjoint random Fredholm integral equa­
tion 

(5) f K(u, t)x*(u, œ)dm(u) - \x*(t, co) = y*(t) 

in the adjoint space L% (s=Z,*). 
In operator form Equation (4) becomes (T(oû)--\I)x = y, where 

(6) T{o))x — I Kit, u)x(u, œ)dm(u) 

is a random integral operator on the Orlicz space L$(Z>W, m(Z>w)). We 
assume that the integral exists in the sense of Lebesgue for almost 
every co£Q. 

We first consider some properties of the random integral operator 
r(co). Let us rewrite (6) in the form 

ƒ. K(t, u)h(u, o))dm(u) 
u 

where 
2 The Orlicz space under consideration will always be separable since the measure 

m is Lebesgue measure. 
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h(u, co) = x(u, co), for u G Da, 

= 0, for u G U - Do,. 

The function h(u, co) can also be written as h(u, co) =XD0)(U)X(U, CO), 
where XD^U) is the characteristic function of the random set £>w. 
Since K(t, u) is a continuous function of t, uÇzDa, and is, by hypothe­
sis, an m(DW)X^(^W)-measurable function on D„XDm and if we 
restrict our attention to measurable solutions x{u, co), then it is clear 
that the following proposition is true: 

A sufficient condition f or h(u, co), and consequently Tico), to be meas­
urable is that the characteristic f unction XD^U) be measurable? and also 
the random solution x(u, co). 

We introduce the following: 
DEFINITION (cf. [13]). The kernel K(t, u), measurable on D^XD*, 

has the property (P) relative to the Or liez space L^(Da, m(Da)) when 

r(f) = I | K{t, u)x(u, co) | dm(u) G L^(Da, m(Du)). 

As before, the integral is assumed to exist in the sense of Lebesgue 
for almost every coGQ. We have 

THEOREM 1. If the kernel Kit, u) has the property (P), then the ran­
dom integral operator Tico) defined by (7) is a linear random operator 
on L<& into L$. 

THEOREM 2. If the kernel Kit, u) has the property (P), the linear ran­
dom operator Tico) defined by (7) is a bounded random operator on L$> 
into L$. 

Since the kernel Kit, u) has the property (P), Theorem 1 follows 
for every o>G& from the classical result [13, p. 227]; and Theorem 2 
follows from the classical result [13, p. 228] applied to every coGfi 
separately. 

The above results can be summarized as follows : the random iFred-
holm) integral operator (6) on the Orlicz space L<& will be a measurable 
random endomorphism if (i) the kernel Kit, u) has the property (P), 
and (ii) the random solution xiu, co) and the characteristic function of 
the random set Du are measurable with respect to the same a-algebra of 
Borel subsets of 12. 

If we assume that Tico) is compact an application of the classical 
theory yields 

8 XDwiu) will be measurable if the random set Da is measurable. 
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THEOREM 3. For every fixed coG^ the number of eigenvalues of the 
nonhomogeneous random Fredholm integral equation is zero, finite, or 
denumerably infinite] and in the latter case limn^ooXw = 0. 

This result also holds for the adjoint random integral equation, 
since it depends on the compactness of T(œ), and T*(co) is compact if 
7\co) is compact. 

In [4] we established the existence of a juo-measurable random 
resolvent operator R\(T, co) = (r(co) — X/)"1, where juo is the measure 
of the set O0(X) = {co: |X| >||7\co)j|}. Using this result and the cor­
responding result for the operator i?x(T*, co), together with classical 
theory, we have 

THEOREM 4. For every coG^o every complex number XT^O belongs 
either to the resolvent set of JH(CO) and T*(co), or it is an eigenvalue of 
JT(CO) and T*(co). In the first case the random Fredholm integral equa­
tions 

/
K(t,u)x(u,<a)dm(u) — \x(t, co) = y(t), 

»<* 

/
K(u, t)x*(u, co)dm(u) — \x*(t, co) = y*(t) 

have f or every y{t)Ç:L<& and y^{t)Ç:L%^L^ uniquely determined solu­
tions 

(7) x(u, co) = Rx(T, cc)y(t) G Z*, 

(8) **(«, co) = RX(T*, o>)y*(t) G Z*. 

4. Random solutions by successive approximations. The theory of 
random contraction transformations as developed by O. Hans [5; 7] 
and A. Spacek [12] can be utilized to prove 

THEOREM 5. Consider the random Fredholm integral equation (4) in 
the Orlicz space Z,$(Z>W, m(DJ)), where the kernel K(t, u) is measurable 
on DuXD*,, with \K(t, u)\ <M, andforallcûÇzQy(t)Ç:L<s> is known. If 
|X| >m(D03)M1 where m^D^) is the Lebesgue measure of Dœ, then for 
every fixed uÇ^D^ there exists a mapping T\(CO) from 0 into H which is 
a generalized random variable, and the solution of Equation (4). 

We remark that the solution can be found by successive approxi­
mations, the nth approximation being given by 

(9) xn(t, co) = —< I K(t, u)xn-i(u, <a)dtn(u) — y(t) > , 
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where Xo(u, co) is an arbitrary generalized raneom variable with values 
in L$. 
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