
TOTALLY ORDERED COMMUTATIVE SEMIGROUPS 

A. H. CLIFFORD1 

Let 5( + , < ) be a system consisting of a set S endowed with an 
associative binary operation + and a total ( = linear = simple) order 
relation < . The composition + and the relation < may be connected 
by either or both of the following conditions. 

MC (Monotone Condition). If a and b are elements of 5 such that 
a<b then a+c^b+c and c+a^c+b for all c in S. 

CC (Continuity Condition), (x, y)—>x+y is a continuous mapping 
of 5 X 5 into 5, where 5 is endowed with the order topology.2 

We shall call S an ordered semigroup (abbreviated "o.s.") if MC 
holds, and an ordered topological semigroup (abbreviated "o.t.s.") if 
CC holds. §2 below (Theorems 1-6) deals with the former, and §3 
(Theorems 7-10) with the latter. An o.t.s. is an instance of a mob 
in the sense of A. D. Wallace [30 ]. 

If an o.s. S is a group with respect to + , then S is an ordered group, 
as customarily defined. In this case CC also holds. On the other hand, 
in each of Theorems 7-10, it turns out that MC emerges as a conse­
quence of CC and other hypotheses. In general, however, MC and CC 
are independent. 

An o.s. S satisfies the strict MC, i.e. a<b implies a+c<b+c and 
c-\-a<c+b, if and only if it is cancellative, i.e. a+c~b+c or c+a 
— c-\-b implies a — b. 

In spite of the title, we shall not assume that S is commutative, i.e. 
a+b = b+a for all a, b in S. In each of Theorems 7-10 and also 
Theorem 1 (Holder 1901), commutativity will not be a hypothesis, 
but will be a conclusion of the theorem. 

The bibliography (25 items) lists all papers known to me dealing 
with o.s.'s or o.t.s.'s which are not necessarily ordered groups. (Al­
though every group is of course also a semigroup, the "theory of 
semigroups" does not presume to include the vastly larger theory of 
groups.) Items [9; 10; 16]; and [17] contain results on o.t.s.'s which 
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are subsidiary to the main purpose of the paper. Items [18] and [19] 
are principally concerned with partially ordered semigroups, but con­
tain much of interest for totally ordered ones.3 In all the rest, either 
o.s.'s or o.t.s.'s are the chief concern. It would be clearly impossible 
to give an adequate account of all of these in an hour. I have chosen 
to present ten theorems that appeal to me as interesting and signifi­
cant. 

The general references, items [26-30], contain pertinent material, 
but nothing specifically on the subject of o.s.'s or o.t.s.'s. 

NOTATION. Let A and B be subsets of an o.s. or o.t.s. Then: 
(1) A+B means the set of all a+b with a in ^4, b in B\ (2) A < B means 
a<b for all a in A, b in B\ (3) A\B means the set of all elements in 
A but not in B. 

The whole paper has been expressed in additive notation for the 
sake of uniformity. Most of the references use multiplicative nota­
tion, but additive was chosen because it seems more natural for the 
basic examples ("fundamental semigroups") given in §1. These are 
denoted by P , Pi , P* , Z, and Zn (n any positive integer). Other fixed 
symbols are P [ l ] , P ( l ) , Z [ ^ ] , defined in §1, and R for the additive 
ordered group of all real numbers. 

ABBREVIATIONS. 

o.s. = ordered semigroup. 
o.c.s. = ordered commutative semigroup. 
o.t.s. = ordered topological semigroup. 
n.o. = naturally ordered. 
pos.o. = positively ordered. 
(p.o. = partially ordered). 

1. Basic definitions and examples. Let 5 be a semigroup. An ele­
ment 0 of S is called an identity element if 0 + a = a + 0 = a for all a 
in 5 ; it is unique if it exists. An element <*> of 5 is called an absorbent 
element if oo + a = a + °° = °° for all a in 5 ; it is also unique if it exists. 
An element e of 5 is idempotent if e-\-e = e. 

Let a G S, and let n be a positive integer. By na we mean 
a+a+ • • • +a (n terms), and we call na a natural multiple of a. The 
set of natural multiples of a is a subsemigroup of S called the cyclic 
subsemigroup of S generated by a. The number of distinct multiples 
of a is the order of a. 

If S is an o.s., and a has finite order n, then either 

a < 2a < 3a < • • • < (n — \)a <na = (n + \)a = (n + 2)a = - • • 
8 The same is true of Item [25a], of which I was unaware at the time this paper 

was written. 
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or the dual thereof; in either case, na is idempotent. By the dual of 
a statement we mean that obtained from it by interchanging < and 
> . By the dual of an o.s. or o.t.s. 5( + , < ) , we mean 5( + , > ) . 

Let 5 be a semigroup. A subset J of S is called an ideal if J+SQJ 
and S-\-JÇiJ. By the Rees difference-semigroup S — J (Rees [28, p. 
389]) we mean the semigroup (S\J)\J { °° }, where <*> does not repre­
sent any element of 5, with addition + defined as follows (a, b in 
S\J): 

(a + b if a + b $ J, 
a + b = < 

I» Ha + bGJ; 
o o - j - a = a - 4 ~ ° ° = oo-f-oo = oo. 

Let S be an o.s. or o.t.s. A subset A of S is called convex if a £ - 4 , 
bÇzA, x £ S , and a<x<b imply xÇzA. If J is a convex ideal, then 
S — J can be ordered by retaining the original order in S\J and de­
claring, for any a in S\J, a<<*> or a> oo according to whether # < ƒ 
or a > J. If 5 is an o.s., so is S — J. If 5 is an o.t.s., and J is a closed 
interval, then S — J is also an o.t.s. We regard the sets {x\ # £ 5 , xSc] 
and { x | x £ 5 , x ^ c } , with c a fixed element of 5, as being closed 
intervals. 

Let 5 and 5 ' be two o.s.'s or two o.t.s.'s. A one-to-one mapping ƒ 
of 5 into S' is called an isomorphism if f(a+b)=f(a)+f(b) and if 
a<b implies f (a) <ƒ(&), for all a and & in S. We then say that S is 
embedded in 5 ' . If ƒ maps 5 0wfo 5 ' , then we say that S and 5 ' are 
isomorphic. 

Let P be the ordered additive semigroup of all positive real num­
bers, and Z that of all positive integers. Let 

P [ l ] = {x\xEP, x^ 1}, P( l ) = {x\xEP, x> l } , 

Z[w] = {m | m £ Z, m ^ n}, n a fixed positive integer. 

P [ l ] and P ( l ) are convex ideals in P , likewise Z[n] in Z, and we 
may form the ordered Rees difference-semigroups 

P i = P - P [ l ] , P? = P- P ( l ) , Zn = Z- Z[n]. 

We may visualize Pi as the half-closed real interval (0, l ] with addi­
tion + defined by a+& = min {a+b, l } . We may visualize P * as 
(0, 1 ]U{ oo } with 

fa + J if a + b < 1, 

I oo if a + b > 1. 
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Since P [ l ] is closed, Pi is continuous (as well as montone); P * is 
monotone but not continuous. Every infinite cyclic o.s. is isomorphic 
with Z or its dual; every finite cyclic o.s. of order n is isomorphic with 
Zn or its dual. Being discrete, Z and Zn are continuous. 

P , Pi , Pi*, Z, and Zn (n a positive integer) will be called the funda­
mental semigroups. Theorems 5, 6, and 10 below show that extensive 
classes of o.s.'s and o.t.s.'s are constructible from the fundamental 
semigroups. Theorems 1(A), 4(A), 8, and 9 characterize individual 
fundamental semigroups, or slight modifications thereof. 

Let S be an o.s. We call 5 positively ordered (abbreviated "pos.o.") 
if a+b^a and a+b^b for all a, b in 5. This differs from Yamada's 
definition, [25, p. 17], which requires that a+b>a and a+b>b. 

If S contains an identity element 0 as its lower endpoint, then it 
is positively ordered; for, using the MC, a^O implies a+b^bt and 
&^0 implies a+b'èa. Conversely, let 5 be positively ordered. If S 
contains an identity element 0, then 0 is the lower endpoint of 5 ; 
and if 5 does not contain an identity element, one can be adjoined 
to 5 at its lower end. 

We say that an o.s. S is naturally ordered (abbreviated "n.o.") if 
it is positively ordered, and a<b implies that a+x = y+a = b for 
some x and y in 5. An o.c.s. (commutative o.s.) S is n.o. if and only 
if the following is true: aSb (a, b in S) if and only if a — b ora+x = b 
for some x in S. The foregoing may be taken as the definition of a 
binary relation ^ in any commutative semigroup S. This relation is 
reflexive, transitive, and montone; it is indeed just the usual division 
relation when 5 is written multiplicatively. It is a total ordering of S 
if and only if the trichotomy condition is satisfied: for any a, b of S> 
exactly one of the relations a<b, a = b, b<a holds. Klein-Barmen 
[14; 15] calls an n.o.c.s. with identity element a linear holoid. If S 
is n.o., then every subsemigroup of 5 is pos.o. But there exist 
pos.o.c.s.'s which cannot be embedded in an n.o.c.s., e.g. Nakada's 
Example 10, [19, p. 83]. The fundamental semigroups are all n.o. 
On the other hand, P [ l ] , P ( l ) , and Z[n] for » > 1 , are pos.o. but 
not n.o. 

An o.s. 5 will be called archimedean if the following condition 
holds. Let a and b be any elements of S neither of which is the 
identity element of S (if such exists). (1) If 2a^a and 2&^&, then 
there exists a positive integer n such that na^b; and (2) if 2a^a 
and 2bSb then na^b for some n. If S is pos.o., (2) can be omitted 
and the hypothesis in (1) is redundant. 

An ordered set S is called (conditionally) complete if every subset 
of S bounded from above has a least upper bound. This is equivalent 
to the dual statement. I shall omit the modifier "conditionally." 
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Every complete ordered abelian group is archimedean, but this is 
not so for ordered commutative semigroups in general. The funda­
mental semigroups are all complete and archimedean. 

A semigroup 5 will be called nil if it contains an absorbent element 
oo, and if every element a of S is nilpotent: na= <x> for some positive 
integer n. Pu Pi*, and Zn are nil. If a pos.o.c.s. S is nil, then oo is 
the greatest element of 5, and 5 is clearly archimedean. 

2. Algebraic theory. In this section we deal exclusively with o.s.'s 
5, and in fact with commutative ones except for Theorem 1. 

Theorem 1, due to Holder [ l l ] , is the earliest and most funda­
mental in this subject. Its statement has been rephrased in accord­
ance with our present terminology. Immediate and celebrated conse­
quences of Theorem 1 are: (A') every complete ordered group is 
isomorphic with the additive group R of all real numbers; (B') every 
archimedean ordered group can be embedded in R, and in particular 
must be abelian. 

THEOREM 1 (HOLDER 1901). Let S be a cancellative, naturally ordered 
semigroup without identity element and without a least element. (A) S 
is isomorphic with P if and only if it is complete. (B) S can be embedded 
in P if and only if it is archimedean. 

This should be supplemented by the following, first proved by 
Huntington [12, p. 271, Case I; 13, Theorems I' and I I ' ] . I hasten 
to add that this is only a byproduct of these two papers, the main 
objective of which was to give independent and categorical systems 
of axioms for P, Z, and the additive ordered group of positive ra­
t iona l . 

SUPPLEMENT (HUNTINGTON 1902). Let S be a cancellative, naturally 
ordered semigroup without identity element and having a least element. 
If S is archimedean, then it is complete, and is isomorphic with Z. 

If G is an ordered abelian group, let G + = { x | x £ G , x*zO}. Any 
subsemigroup of G is a cancellative o.c.s. Conversely, we have the 
following theorem, the first part of which is essentially well-known. 
The embedding of Z in the ordered additive group of all integers is 
a familiar special case. I t does not, however, seem to be in the litera­
ture in general form prior to being given explicit expression inde­
pendently by Dov Tamari [2l] in France, Alimov [2] in Russia, 
and Nakada [18] in Japan. The last two assertions are made by 
Nakada in Theorems 5 and 7 of [18]. 

THEOREM 2 (TAMARI 1949, ALIMOV 1950, NAKADA 1951). Every 
cancellative ordered commutative semigroup S can be embedded in an 
ordered abelian group G, unique to within isomorphism, such that every 
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element of G is the difference of two elements of S. S is contained in the 
positive part G+ of G if and only if it is positively ordered. S = G+ or 
G+\ {0} if and only if S is naturally ordered. 

This theorem does not hold as it stands if we remove the hypothesis 
that S be commutative. In 1953, Chehata [3] and Vinogradov [24] 
independently gave the same example of an ordered cancellative 
semigroup which cannot be embedded in a group. 

It must not be supposed that embeddability in an ordered abelian 
group places the theory of cancellative o.c.s.'s outside the scope of 
the present theory. (The theory of subsemigroups of a group belongs 
to the theory of semigroups as well as to group theory!) For example, 
Yamada [25] characterizes an interesting class of subsemigroups of P. 

If S is a cancellative o.c.s., and G is its ordered difference-group, 
it is not always easy to predict properties of G from those of S. As 
an illustration, S may be archimedean but G nonarchimedean. For 
example, let S be the free commutative semigroup generated by two 
symbols x and y, i.e. S consists of all mx+ny (m and n non-negative 
integers, not both zero), with mx+ny =mfx+nfy if and only if m = m' 
and n = n'. Define mx+ny <mfx+n'y if m+n<m'+n', or if m+n 
— m'+nr and m<mf. Then it is easy to see that 5 is an archimedean, 
cancellative o.c.s. But G is not archimedean, for x>0 and x—yX), 
but n(x—y) <x for all n, since nx<x+ny in S. 

Alimov [2] gives an interesting criterion that G be archimedean. 
For simplicity, assume that S is a positively ordered, cancellative 
o.c.s. Two elements a, b oî S are said to form an anomalous pair if, 
for every positive integer n> na<nb<(n + l)a. Then Alimov's cri­
terion is : G is archimedean if and only if S contains no anomalous pair. 
The condition is plainly necessary, since, by Holder's Theorem, if G 
is archimedean, it can be embedded in the additive group of all real 
numbers. To show the sufficiency, suppose G is not archimedean. 
Then there exist elements a, b, c oî S such that a>c and n(a — c)<b 
for every n. Then (è+c, b+a) is an anomalous pair. For nc<na<b 
+nc, whence 

n(b + c) < n(b + a) < nb + b + nc < (n + l)(b + c). 

Let I be an ordered set. To each i in I let correspond a pos.o.c.s. Si. 
For i^j in / , we assume that Si and Sj are disjoint. Let S = U,ei Si. 
Order S so that Si < S3- if i <j, and such that order within each Si is 
the same as already defined. Define + in S extending the given opera­
tion + in each Si, and such that if a £ S ; , &£5y, and i<j, then a+b 
= b+a = b. One easily verifies that S is also a pos.o.c.s. We call S the 
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ordinal sum of the ordered set {S»| i £ ƒ} of pos.o.c.s.'s Si. A pos.o.c.s. 
is called ordinally irreducible if it cannot be expressed as an ordinal 
sum of two or more subsemigroups. 

THEOREM 3 (KLEIN-BARMEN 1942, IN PART). Every positively {natu-
rally) ordered commutative semigroup is uniquely expressible as an 
ordinal sum of an ordered set of ordinally irreducible positively {natu­
rally) ordered commutative semigroups. 

This theorem, for n.o.c.s.'s, was found by Klein-Barmen [14] for 
the case in which S is finite or has the order type of the positive inte­
gers, and the general case was given in [4]. The proof for pos.o.c.s.'s 
is word-for-word the same as that given in [4] for n.o.c.s.'s, replacing 
"ideal" by "upper class," except for trifling changes in the proof of 
Lemma 1.1, p. 633. Logically, this should be the basic theorem, and 
that for n.o.c.s.'s derived therefrom by observing that a pos.o.c.s. 
is naturally ordered if and only if all of its ordinally irreducible com­
ponents are naturally ordered. Remark 1 of [4, p. 643], gives the 
erroneous impression that one may define the ordinal sum of any 
ordered set of o.c.s.'s Si (iÇE.1). If i is not the least element of 2", 
then it is necessary that Si be positively ordered ; for if j<iy and aÇzSj, 
then {a}\JSi is an o.c.s. with identity element at its lower end. 

The following theorem is an amalgam of the Hölder-Huntington 
theorems and analogous results in [4] on noncancellative archimedean 
n.o.c.s.'s. The proof is not quite immediate, and will be given else­
where [6]. 

THEOREM 4. Let S be a naturally ordered commutative semigroup. 
(A) S is isomorphic with a fundamental semigroup if and only if it is 
complete and ordinally irreducible. (B) S can be embedded in a funda­
mental semigroup if and only if it is archimedean and has no identity 
element. 

The next theorem corrects an error in [4], namely the last state­
ment in Remark 4, p. 644. The proof will be given in [ó]. 

THEOREM 5. Let S be a naturally ordered commutative semigroup, 
and let S — \) iei Si be its reduction into ordinally irreducible components 
Si ( i £ I ) . Then S is complete if and only if the following conditions are 
satisfied. 

(1) The ordered set I is complete. 
(2) For each i in I, Si is isomorphic with a fundamental semigroup. 
(3) If i is an element of I having no immediate successor, but is not 

the greatest element of I, then Si must have a greatest element. 
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(4) If i is an element of I having no immediate predecessor, but is not 
the least element of I, then Si must have a least element. 

(5) If i, j is an adjacent pair of elements of I, with i <j, then either 
Si must have a greatest or Sj a least element. 

We remark that the fundamental semigroups having a greatest 
element are Pi , P * , and Zw; those having a least element are Z and Zp . 

A natural two-fold objective is (1) to describe all complete o.c.s.'s, 
and (2) to describe all o.c.s.'s which can be completed, i.e. embedded 
in complete o.c.s.'s.4 Theorem 5 solves (1) for the class of n.o.c.s.'s. 
In [ó] it will be shown that an n.o.c.s. S can be embedded in a com­
plete n.o.c.s. if and only if each ordinally irreducible component of S 
is archimedean. 

In his book [29] on cardinal algebras, Tarski devotes a section 
(§13, pp. 175-189) to semigroups. By "semigroup," Tarski means 
what I would call a commutative, cancellative semigroup with iden­
tity. In Theorem 13.27, Tarski gives conditions on a semigroup S 
(in his sense) which are necessary and sufficient that 5 be a general­
ized cardinal algebra. The interesting cases are those in which the 
partial ordering in S is not total; for if it is total, S is then isomorphic 
with { 0 } U P o r {OJUZ. If we do not require cancellation, there are 
more interesting totally ordered cases. As the prime example, the 
cardinal algebra of all cardinal numbers is an n.o.c.s. which is the 
ordinal sum of Z and a well-ordered set of one-element semigroups. 
In the following theorem, we give necessary and sufficient conditions 
on an n.o.c.s. that it be a generalized cardinal algebra. 

THEOREM 6. Let S be a naturally ordered commutative semigroup, and 
let S = Uiei Si be its reduction into ordinally irreducible components Si. 
Then S is a generalized cardinal algebra if and only if the following con­
ditions hold. 

(1) 5 has an identity element 0. 
(2) Every countable subset of the ordered set I which is bounded from 

above has a least upper bound. 
(3) For each i in I, Si is isomorphic with P , Zt or Z\. 
(4) If Si is isomorphic with P or Z, and i is not the greatest element 

of I, then i has an immediate successor j in I, and Sj is a one-element 
semigroup. 

(5) If an element i of I is the least upper bound of a sequence of ele­
ments of I each less than i, then Si is a one-element semigroup. 

If, in addition to satisfying these conditions, S has an absorbent ele-

4 As a consequence of Krishnan's Theorem 1 [25a], every o.c.s. can be completed. 
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ment co, then S is a cardinal algebra; if S does not have an absorbent 
element, then SKJ {00} is a cardinal algebra. 

As an immediate corollary, we have the following result. Let S be 
an n.o.c.s. with identity element 0 and absorbent element 00. Then 
5 is a cardinal algebra if and only if it is an ordinal sum S = \J3ej Sj 
of n.o.c.s.'s 5 / each isomorphic with P U { 00 }, ZU{ 00 }, or { 00 } 
such that the following condition is satisfied. Every strictly monotone 
increasing and bounded sequence of elements of J has a least upper 
bound in / , and for every element j of / which is the least upper 
bound of such a sequence, Sj is a one-element semigroup. 

In a forthcoming paper [27], A. B. Clarke proves a reduction theo­
rem for cardinal algebras analogous to Theorem 3 (namely, his Theo­
rem 3.14). Also of interest in the present connection is his Theorem 
4.7, roughly to the effect that any simple, archimedean cardinal 
algebra is isomorphic with one of the four algebras : {0} \JP\J { 00 }, 
{0}UZW{oo} , {o}U{«>}, {0}. 

3. Topological theory. Let S be an ordered set. We say that »S is 
bounded if it has endpoints, i.e. greatest and least elements. We say 
that S is dense if, between any two distinct elements of 5, there al­
ways lies a third element of S. Let S be endowed with the order 
topology. We then have two elementary theorems: (1) S is compact 
if and only if it is complete and bounded; (2) S is connected if and 
only if it is complete and dense. 

By a thread we mean a connected o.t.s. By a standard thread we 
mean a bounded thread, one endpoint of which is the identity and 
the other the absorbent element of 5. 

In 1948, Aczél [ l ] showed that any cancellative, monotone thread 
S on a real interval is isomorphic with a subthread of the additive 
thread R of all real numbers. The following year, Dov Tamari [20 ] 
showed that the monotone condition is a consequence of the other 
assumptions, and also showed that every subthread of R is isomorphic 
with one of the following, or the dual thereof: P , P , P U J O } , P [ l ] , 
P ( l ) . I t is, moreover, readily seen that the arguments used hold for 
general threads, not necessarily based on a real interval. 

THEOREM 7 (ACZEL 1948, TAMARI 1949). Any cancellative thread is 
isomorphic with P , P , P U { o } , P [ l ] , P ( l ) , or with the dual of one of 
these. 

The systematic study of threads with idempotent endpoints was 
initiated by Faucett, [8] and [9]. The following is only one of many 
interesting results. 

file:///JP/J
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THEOREM 8 (FAUCETT 1955). A standard thread with no interior 
idempotent element and no interior nilpotent element is isomorphic with 
{0} \JP^J { oo } or with the dual thereof. 

(We must warn the reader that we are maintaining the additive 
notation.) 

The study was continued by Mostert and Shields [16], more or 
less incidentally to their work on semigroups on a manifold. The fol­
lowing two theorems were obtained for the case when S is based on a 
real interval, but it is readily seen that this restriction is not neces­
sary. Theorem 10 is expressed in terminology quite different from 
that of its discoverers. 

THEOREM 9 (MOSTERT AND SHIELDS 1957). A standard thread with 
no interior idempotent element, but having at least one interior nilpotent 
element, is isomorphic with {0} ̂ JP\ or with the dual thereof. 

THEOREM 10 (MOSTERT AND SHIELDS 1957). Let I he any compact 
ordered set. If iÇ^I, and i has no immediate predecessor, let Si be a one-
element semigroup. If iÇLI, and i has an immediate predecessor, let Si 
be an isomorphic copy of either PU { oo } or Pi. Then the ordinal sum 
of the Si (i(~I) is a standard thread, and conversely every standard 
thread has this structure. 

A proof of the converse can be based on Theorem 5 for Faucett 
showed that every standard thread S is naturally ordered (remark 
after Lemma 2 of [8]) and commutative (Lemma 5 of [s]). Since 5 
is dense, each ordinally irreducible component Si of S must be iso­
morphic with P, Pi, or Zi. From (3) and (5) of Theorem 5, we see 
that every time P occurs as an Si it is immediately followed by a Z\, 
so we may merge these two into P\J { oo }. I shall omit the details. 

A result closely related to Theorem 10 is given by Gleason, [10, 
Lemma 3]. In [17], Mostert and Shields determine the structure of a 
thread based on the open real line, [0, oo), with 0 and 1 playing their 
usual rôles (in multiplicative notation). A complete determination of 
all threads with idempotent endpoints is given in [5]. A complete 
determination of all bounded threads, one endpoint of which is the 
identity element, is given by Cohen and Wade [7]. 
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