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The proofs of (4.2) and then of (1.1) are essentially the same as 
those of (3.2) and Dehn's lemma. The details are left to the reader. 
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RESEARCH PROBLEMS 

12. Richard Bellman: Ordinary differential equations. 

It is known that if 
a. A is a stability matrix, i.e., all characteristic roots have negative real parts, 
b- ||«(*)||/JM|-»0 as IHI-0, (||*|| = E.-W), 

then all solutions of dx/dt—Ax-\-g(x) approach zero as t—»<*>, provided that ||#(0)|| 
is sufficiently small (Poincaré-Lyapunov theorem). 

If x(0) —a\c, where c is a characteristic vector of A and a\ is a scalar, what is the 
precise bound for \a\\ in terms of A and g(x)? (Received January 7, 1958.) 

13. Richard Bellman: Partial differential equations. 

It is known that if \g(u)\ / |u \ —»0 as u—>0, then the solution of ut = uxx+g(u), 
u(0, t) —u(l, t) =0, />0, approaches zero as t—» oo, provided that Maxo^a^i | u(x, 0)| 
is sufficiently small. 

a. If u{x, 0) —c\ what is the precise bound for \c-\ in terms of g(u)7 
b. If u(x, 0) =ci sin kirx, what is the precise bound for |ci| in terms of g(u)7 

14. Richard Bellman: Functional equations. 

Let fn(u) be an analytic function of the function u(x) and its first n derivatives 
u'{x), • • • , u{n){x), for u 7e 0, satisfying the functional equation 

fn(uv) =fn(u) + ƒ » ( » ) . 

It is well-known that/o(«)—ci log u, and under much lighter conditions, and it is 
easy to show that fi(u) —C\ log u+ctu'/u. 

What is the analytic form of fn for general w? (Received January 9, 1958.) 

15. Richard Bellman: Functional equations and differential equa­
tions. 

Consider the nth order linear differential equation 

dnu dn~xu 
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and make the change of variable u—vw. The function w satisfies an equation of the 
same type with coefficients h(t)f i~l, 2, • • • , n, where 

h(t) « ai(t) + nv'/v, 

h{t) - «.(O + <n(*)(» - 1)»7* + n(n~1} v"/v, 

and so on. 
Introduce the function 

bk(t) = fk(a, v) = /*(ai, a2, • • • , ak; v), 

dependent upon v and its first k derivatives, for & = 1, 2, • • • , n. It is easy to see, 
from the origin of the coefficients bk, that fk satisfies the group property 

Ma, viv2) = fk(fi(&, vi),Ma, vi), • • • ,ƒ*(«, fli); %). 

What are the most general functions satisfying these functional relations? (Re­
ceived January 9, 1958.) 

16. Richard Bellman: Functional equations and differential equa­
tions. 

If in the above linear equation, we introduce a change in the independent variable 
of the form t=<f>(s), we obtain coefficients bi(t) which are functions of the at and the 
derivatives of <j>. Similarly, the iterated substitution t — \p(<j>{s)) gives rise to functional 
equations of the type given above. What are the most general functions satisfying 
these relations? (Received January 9, 1958) 

17. Richard Bellman: Matrix functional equations and differential 
equations. 

In the matrix differential equation dX/dt—A(t)X(t) make the change of variable 
Xit) = Y(t)Z(t). Then Z satisfies the equation 

dZ/dt = (Y~lA(t)Y - Y-W)Z. 

Introduce the matrix function 

F (A; Y) - Y~lAY - Y~lY'. 

Then, as before, 

F ( i l ;F iFO-F(F( i l ;F i ) ,F | ) . 

What is the most general matrix function of F and Y' satisfying this equation? 
(Received January 9, 1958.) 


