The proofs of (4.2) and then of (1.1) are essentially the same as those of (3.2) and Dehn's lemma. The details are left to the reader.

References

- 1. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. vol. 69 (1910) pp. 137-168.
- 2. C. D. Papakyriakopoulos, Dehn's lemma and asphericity of knots, Ann. of Math. vol. 66 (1957) pp. 1-26.
 - 3. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig, 1934.
- 4. R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. (3) vol. 69 (1952) pp. 109-182.

Brandeis University and Oxford University

RESEARCH PROBLEMS

12. Richard Bellman: Ordinary differential equations.

It is known that if

- a. A is a stability matrix, i.e., all characteristic roots have negative real parts,
- b. $||g(x)||/||x|| \to 0$ as $||x|| \to 0$, $(||x|| = \sum_i |x_i|)$,

then all solutions of dx/dt = Ax + g(x) approach zero as $t \to \infty$, provided that ||x(0)|| is sufficiently small (Poincaré-Lyapunov theorem).

If $x(0) = a_1 c$, where c is a characteristic vector of A and a_1 is a scalar, what is the precise bound for $|a_1|$ in terms of A and g(x)? (Received January 7, 1958.)

13. Richard Bellman: Partial differential equations.

It is known that if $|g(u)|/|u| \to 0$ as $u\to 0$, then the solution of $u_t=u_{xx}+g(u)$, u(0,t)=u(1,t)=0, t>0, approaches zero as $t\to\infty$, provided that $\max_{0\le x\le 1} |u(x,0)|$ is sufficiently small.

- a. If $u(x, 0) = c_1$ what is the precise bound for $|c_1|$ in terms of g(u)?
- b. If $u(x, 0) = c_1 \sin k\pi x$, what is the precise bound for $|c_1|$ in terms of g(u)?
- 14. Richard Bellman: Functional equations.

Let $f_n(u)$ be an analytic function of the function u(x) and its first n derivatives $u'(x), \dots, u^{(n)}(x)$, for $u \neq 0$, satisfying the functional equation

$$f_n(uv) = f_n(u) + f_n(v).$$

It is well-known that $f_0(u) = c_1 \log u$, and under much lighter conditions, and it is easy to show that $f_1(u) = c_1 \log u + c_2 u'/u$.

What is the analytic form of f_n for general n? (Received January 9, 1958.)

15. Richard Bellman: Functional equations and differential equations.

Consider the nth order linear differential equation

$$\frac{d^{n}u}{dt^{n}} + a_{1}(t)\frac{d^{n-1}u}{dt^{n-1}} + \cdots + a_{n}(t)u = 0$$

and make the change of variable u=vw. The function w satisfies an equation of the same type with coefficients $b_i(t)$, $i=1, 2, \cdots, n$, where

$$b_1(t) = a_1(t) + nv'/v,$$

$$b_2(t) = a_2(t) + a_1(t)(n-1)v'/v + \frac{n(n-1)}{2}v''/v,$$

and so on.

Introduce the function

$$b_k(t) = f_k(a, v) = f_k(a_1, a_2, \cdots, a_k; v),$$

dependent upon v and its first k derivatives, for $k=1, 2, \cdots, n$. It is easy to see, from the origin of the coefficients b_k , that f_k satisfies the group property

$$f_k(a, v_1v_2) = f_k(f_1(a, v_1), f_2(a, v_1), \cdots, f_k(a, v_1); v_2).$$

What are the most general functions satisfying these functional relations? (Received January 9, 1958.)

16. Richard Bellman: Functional equations and differential equations.

If in the above linear equation, we introduce a change in the independent variable of the form $t=\phi(s)$, we obtain coefficients $b_i(t)$ which are functions of the a_i and the derivatives of ϕ . Similarly, the iterated substitution $t=\psi(\phi(s))$ gives rise to functional equations of the type given above. What are the most general functions satisfying these relations? (Received January 9, 1958)

17. Richard Bellman: Matrix functional equations and differential equations.

In the matrix differential equation dX/dt = A(t)X(t) make the change of variable X(t) = Y(t)Z(t). Then Z satisfies the equation

$$dZ/dt = (Y^{-1}A(t)Y - Y^{-1}Y')Z.$$

Introduce the matrix function

$$F(A; Y) = Y^{-1}AY - Y^{-1}Y'.$$

Then, as before,

$$F(A; Y_1Y_2) = F(F(A; Y_1), Y_2).$$

What is the most general matrix function of Y and Y' satisfying this equation? (Received January 9, 1958.)