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The proofs of (4.2) and then of (1.1) are essentially the same as
those of (3.2) and Dehn’s lemma. The details are left to the reader.
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RESEARCH PROBLEMS

12. Richard Bellman: Ordinary differential equations.

It is known that if

a. A is a stability matrix, i.e., all characteristic roots have negative real parts,

b. [lg@)]|/|l+l| =0 as ||| =0, ([a]| = Xl x:]),
then all solutions of dx/dt=Ax-+g(x) approach zero as {— =, provided that ”x(O)“
is sufficiently small (Poincaré-Lyapunov theorem).

If x(0) =a.c, where ¢ is a characteristic vector of 4 and a, is a scalar, what is the
precise bound for [a1| in terms of 4 and g(x)? (Received January 7, 1958.)

13. Richard Bellman: Partial differential equations.

It is known that if |g(u)|/]u| —0 as 4—0, then the solution of #;=wu..+g(u),
u(0, t) =u(1, £) =0, t>0, approaches zero as t— », provided that Maxogs<1 |u(x, 0)]
is sufficiently small.

a. If u(x, 0) =c¢, what is the precise bound for |cll in terms of g(u)?

b. If u(x, 0) =c, sin krx, what is the precise bound for |c;] in terms of g(u)?

14. Richard Bellman: Functional equations.

Let f.(#) be an analytic function of the function #(x) and its first # derivatives
u'(x), + + -, u™(x), for u 5 0, satisfying the functional equation
Saluw) = fu(u) + fa(v).

It is well-known that fo(#) =c¢1 log #, and under much lighter conditions, and it is
easy to show that fi(») =c log u+cou’/u.
What is the analytic form of f, for general #n? (Received January 9, 1958.)

15. Richard Bellman: Functional equations and differential equa-
tions.

Consider the #nth order linear differential equation

ary a1y
En_-l_al(t)ﬁ-l— ceetan@u=0
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and make the change of variable # =vw. The function w satisfies an equation of the
same type with coefficients b;(¢), 2=1, 2, - + + , n, where

h(t) = a1(t) + nv' /v,
be(®) = a2(®) + a1 (t)(m — 1) /v +- n_(n__z-_-__ll o' /v,

and so on.
Introduce the function

bi(9) =flc(a) v) =flc(al, @2y * * *y Ok; 1’)’

dependent upon v and its first k£ derivatives, for k=1, 2, - + +, n. It is easy to see,
from the origin of the coefficients by, that fi satisfies the group property

Si(a, e} = fi(fia, 01, fa(e, v1), + « -, fala, w1); v2).
What are the most general functions satisfying these functional relations? (Re-
ceived January 9, 1958.)

16. Richard Bellman: Functional equations and differential equa-
tions.

If in the above linear equation, we introduce a change in the independent variable
of the form t=¢(s), we obtain coefficients b;(¢) which are functions of the a; and the
derivatives of ¢. Similarly, the iterated substitution ¢ =y¥(¢(s)) gives rise to functional
equations of the type given above. What are the most general functions satisfying
these relations? (Received January 9, 1958)

17. Richard Bellman: Matrix functional equations and differential
equations.

In the matrix differential equation dX/dt=A4 (¢) X (¢) make the change of variable
X(@)=Y(@)Z(@#). Then Z satisfies the equation

dZ/dt = (Y AQY — Y1Y')Z.
Introduce the matrix function
F(4;Y) = Y147 — V1Y,
Then, as before,
F(A; Y1Y2) = F(F(A, Yl), Yg).

What is the most general matrix function of ¥ and ¥’ satisfying this equation?
(Received January 9, 1958.)



