
THE CONVOLUTION TRANSFORM 

D. V. WIDDER 

Introduction. The material I am reporting on here was prepared in 
collaboration with I. I. Hirschman. It will presently appear in book 
form in the Princeton Mathematical Series. I wish also to refer at 
once to the researches of I. J. Schoenberg and his students. Their 
work has been closely related to ours and has supplemented it in cer­
tain respects. Let me call attention especially to an article of Schoen­
berg [5, p. 199] in this Bulletin where the whole field is outlined and 
the historical development is traced. In view of the existence of this 
paper I shall t ry to avoid any parallel development here. Let me 
take rather a heuristic point of view and concentrate chiefly on trying 
to entertain you with what seems to me a fascinating subject. 

T H E CONVOLUTION TRANSFORM 

1. Convolutions. Perhaps the most familiar use of the operation of 
convolution occurs in its application to one-sided sequences {an}o\ 
{bn}o' The convolution (Faltung) of these two sequences is defined 
as the new sequence {cn}<T, 

n n 

(1.1) Cn = 23 akbn-k = ]C Un-kbk. 

The operation arises when power series are multiplied together: 

00 00 00 

X a>kZhY, hzk = J^ckz
k. 

The convolution of two-sided sequences, 
00 00 

(1-2) Cn = S ahbn-k = ]C an-kbk, 
fc=—OO & = — CO 

presents itself when two Laurent series are multiplied. 
Hardly less familiar is the continuous analogue of (1.2), 

ƒ 00 /* 00 

a(x — y)b(y)dy = I a(y)b(x — y)dyt 
-00 J —00 
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which arises when two Fourier integrals or two bilateral Laplace in­
tegrals are multiplied together [6, p. 258]. It is customary to abbrevi­
ate the convolution operation by the symbol *, so that (1.3) be­
comes c(x)=a(x) *b(x). If a(x) and b{x) both vanish on (— <x>, 0), 
(1.3) reduces to 

(1.4) c(x) = I a(x — y)b(y)dy, 
J o 

the analogue of (1.1). 

2. The convolution transform. We may interpret (1.3) as an in­
tegral transform, designating one of the functions a(x) or b(x) as the 
kernel, the other being then transformed into c(x). It is small exag­
geration to say that nearly all the integral transforms in mathe­
matical literature are either in this form or can be put into it by 
change of variable. We give below a number of examples. In subse­
quent work we shall denote the kernel by G(x) and suppose that ƒ (x) 
is the transform of <j>(x): 

ƒ 00 

G(x - y)4>{y)dy. 
—00 

EXAMPLE A. A basic exponential transform. 

lex ( - ° ° , 0 ) , 
(2.2) G(x) = g(x) = < 

10 (0, oo), 

ƒ 00 

e-y<j>(y)dy. 

EXAMPLE B. The Laplace transform {unilateral). 

ƒI 00 

o 

Replace x by ex, y by e~v. Then (2.4) becomes 

/

oo 

er«*~V--y#(er-y) (/ :y f 

- 0 0 

and this is equation (2.1) if 

f(x) = F(ex)ex, G(x) = e~e*ex, 4>(x) = $(<r*). 

EXAMPLE C. The Stieltjes transform. 

-~-dy. 
o x+ y 
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This is in fact the first iterate of the Laplace transform (2.4). It takes 
the form (2.1) when 

f(x) = F(e*)e*i\ G(x) = (1/2) sech (x/2), 4>(x) = $(e*)e*'2. 

EXAMPLE D. The Weierstrass {or Gauss) transform. 

ƒ 00 

e-~(*-v^i*(j>{y)dy. 
- 0 0 

This is already in convolution form with kernel G(x) equal to the 
Gauss frequency function (47r)~"1/2e~a?2/4. 

EXAMPLE E. A general transform. 

ƒi 00 

K(xy)*(y)dy. 
o 

This is clearly equivalent to (2.1) after exponential change of vari­
ables. Many of the classical transforms appear in this form. Examples 
are: Laplace, Fourier-sine, Fourier cosine, Hankel, Meier. The five 
corresponding kernels are 

K(x) = e~"x, sin x, cos x> JQ(X), x1/2Ko(x)y 

where Jo(x) is the Bessel function, K0(x) the modified Bessel function: 

1 r * 
J0(x) = — I cos (x cos y)dy, 

7T J o 

ƒ> 00 

e-x cosh vdy. 
0 

We observe that the general Fourier, the bilateral Laplace, and the 
Mellin transforms can be expressed as the sum of two integrals (2.6). 

In view of these examples the importance of the convolution trans­
form as a unifying influence can scarcely be doubted. The two basic 
problems for any transform are (a) inversion, (b) representation. In 
(a) we seek to recover <j>(x) from ƒ(x), the kernel G(x) being known; 
in (b) we inquire what functions ƒ(x) can be written as convolutions 
(2.1) for a given kernel G(x). In the present paper we restrict atten­
tion to the former problem, referring to [3] or [4] for the latter. 

3. Operational calculus. A very useful guide to the study of the con­
volution transform is the operational calculus. Its practical im­
portance was brought forcefully to public attention by Heaviside 
when he used it so advantageously in the study of electric circuits. 
In brief, the technique consists in treating some operational symbol, 
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such as D for differentiation, as if it were a number throughout some 
calculation and finally in restoring to it its original operational mean­
ing. Of course the success of the method depends upon the existence 
of a correspondence between the operational laws of combination on 
the one hand, and the algebraic ones on the other, but there is ob­
viously no compulsion to investigate this correspondence if one can 
check results directly (as in the case of Heaviside's differential equa­
tions). 

Let us illustrate. Denote by D the operation of differentiation with 
respect to x and by a an arbitrary constant. From the symbolic ex­
pansion 

oo ak£)k 

e aD = Z fc-0 k\ 

we obtain the Maclaurin series 

* ak<j)^(x) 
(3.i) «•**(*) = £ - - 1 - = *(* + «). 

We now define eaD4>(x) as <l>(x+a) even if c/>(x) is not differentiate. 
Suppose that we seek a solution of the differential equation 

ƒ(*) - f{x) = *(*) 

by the operational method. Using the symbol D, we have 

(1 - D)f(x) = 4>(x), 

(3.2) 1 
ƒ(*) = _ D ^(*)> 

but it remains to interpret the operator 1/(1— D). Now 

1 r 0 0 

(3.3) = e-°"g(y)dy, - oo < x < 1, 
1 — X J „oo 

where g(y) is the function of Example A. This is easily verified by 
direct integration. Hence 

1 /•* 
=-*(*) = e-yD4>{x)g(y)dy. 

1 V J -«J 

By (3.1) we thus obtain for the solution of (3.2) 

ƒ 00 

4>(x - y)g{y)dy = g(x)*4>(x). 
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It is now an easy matter to verify that this is in fact a solution, at 
least for a large class of functions </>(x), by substituting the integral 
(2.3) in (3.2): 

(1 -D)g(x)*4>(x) = * ( * ) . 

Note that we have found an inversion operator, 1—D, for the con­
volution transform (2.1) when the kernel G(x) is the special function 
g(x). Observe how it was obtained from equation (3.3). 

More generally, this same operational method would lead us to 
expect that E(D) would invert (2.1) if 

• = I e~xtG(t)dt. 
E{x) J _ 

In other words, the inversion function is the reciprocal of the Laplace 
transform of the kernel. But how is E(D) to be interpreted in the 
general case? If E(x) is a polynomial there can be little doubt, but 
what if E{x) =cos x or l / r ( l — x), for example? 

4. The Laguerre-Pólya class. We can make an effective inter­
pretation of E(D) if E(x) belongs to a large class of functions orig­
inally studied by E. Laguerre (for references see Schoenberg [S]). 
We "normalize" the class, JE(0) = 1, in accordance with the following 
definition. 

DEFINITION 4. E(x) belongs to class E if and only if 

(4.1) E(x) = 6T«**+**n( 1 - —)e*/aft, 
&=i \ ajc/ 

where ak, b, c are real, c^O, and 

For example, 1 —x, ex, cos x, l / r ( l — x), e~*2 all belong to the class. 
Laguerre showed, Pólya introducing a refinement, that a function 
belongs to the class E if and only if it is the uniform limit of poly­
nomials, each of which has real roots only and is equal to 1 at x = 0. 
For example, 

e-*2 = lim ( 1 - — ) . 
tt-*oo \ n / 

Note that the corresponding equation for ex would introduce poly­
nomials with imaginary roots, and that ex2(£E. 
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We mention this beautiful characterization of the class E only in 
passing, for we are not directly concerned with it here.1 What does 
concern us is that the reciprocal of every function of E, except ebx, 
is a Laplace transform, just as for E(x) = l—x in equation (3.3). 
We state the result. 

THEOREM 4.1. If E(x)E:E and E{x)9^ehx, then 

(4.2) • — = f e-*yG(y)dy, 

the integral converging in the largest neighborhood of the origin which is 
free of zeros of E{x). 

It is not our purpose to give complete proofs of theorems here, but 
rather to outline methods. Let us first replace x by the complex vari­
able s—a+ir and continue the function E{x) analytically into the 
complex plane. We then show easily from (4.1) that |E(or+ir ) | 
^ | E(a) | . Next, the product relation (4.1) may be used to show that 

\E(<r+iT)\-* = 0(\r\-*), | r | - > c o , 

uniformly in any vertical strip |<r| ^R. This is for any constant p, 
however large, if E(s) is not the product of eu by a polynomial (in 
which case it is the degree of the polynomial). We can now appeal to 
a familiar theorem from the general theory of Laplace integrals [l, 
p. 126] which insures a representation (4.2) for any function 1/E(s) 
which is analytic in and uniformly small at the two ends of a vertical 
strip. Since 1/E(s) is analytic in the largest vertical strip containing 
the origin and free of zeros of E(s) the representation (4.2) is valid 
there. 

We need also some properties of the function G(y) of (4.2). 

THEOREM 4.2. The function G (y) of Theorem 4.1 has the properties: 

A. G(y) ^ 0, - oo < y < oo, 

B. f~G(y)dy= 1, 

ƒ 00 

yG{y)dy = b, 
—00 

D. f K(y - bYG{y)dy = c + £ at'. 

1 In [4] we use it to show that the kernels G(x) under discussion form a semi­
group and hence in some sense exhaust all kernels amenable to our methods. 
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In the language of statistics, G(y) is a frequency function of mean 
b and variance c+ X X i aï2» With the exception of A these properties 
are all corollaries of Theorem 4.1. Conclusion B follows from the 
normalization E(0) = 1 when we set x = 0 in (4.2); C follows by 
computing the first derivative of the integral (4.2) at x = 0 and the 
computation is best done logarithmically; D follows by computing 
the second derivative of ehx/E(x) at x — 0. 

Property A is a little harder to prove, but the essential reason for 
its t ruth is almost intuitive. The reciprocal of each factor in (4.1) 
(except ehx) is the Laplace transform of a non-negative function: 

(4.3) 
ƒ 00 

erxverv*nAG)dy, 
-oo 

( 1 - — ) <r*/a* = | ak\ \ e-*vg(aky - \)dy% 
\ ak/ J -oo 

where g(x) is the non-negative function of Example A. By the funda­
mental "product theorem" for Laplace transforms referred to in §1 we 
should expect that 
G(y) = {^cyw^iy-bfiu „ | Gl | g(aiy _ ^ „ | a%1 g^y _ ! ) „ . . . 

if we are optimistic about matters of convergence. But then A is 
obvious since the convolution of positive functions is again positive. 

In the more leisurely development available in a book [4] we have 
actually followed a different course in the proofs of both the theorems 
of the present section. 

5. Inversion. Let us now show that the operator E(D), if properly 
interpreted, is indeed effective for the inversion of (2.1). We treat 
first the case c = 0, the factor e~c*2 in (4.1) being then missing. For the 
purposes of presentation here we assume the simplest of conditions 
on <t>(x). I t should be emphasized, however, that the ultimate in gen­
erality has been achieved in this direction. We have shown that if 
4>(x) is any function for which (2.1) converges, then 

E{D)G{x)*(j>{%) = 4>(x) 

almost everywhere. This result should be contrasted with Jordan's 
theorem for Fourier series or integrals where some such local condi­
tion as bounded variation is needed. 

THEOREM 5. If E(x)Ç£E with b — c = Of if G{x) is the function of 
Theorem 4.1, and if cj>{x) is bounded and continuous on (— oo, oo), then 

(5.1) E(D)G(x)*<t>(x) = <t>(x), - oo < x < oo, 
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where 

(5.2) E(D) - lim fl( * )eD"K 

We sketch the proof. Set 

(5.3) pn(D) = n( i—V* 7 0 *' 

so that (5.1) is equivalent to 

ƒ 00 

Gn(x - y)<t>{y)dy = </>(*), 
-00 

where 

G»(*) = Pn(D)G(x). 

We have applied the operator (5.3) under the integral sign (2.1), a 
step easily justified with present hypotheses. By the classical inversion 
of (4.2), see [6, p. 241 ], 

1 c *°° e8X 

G(x) = I ds. 
iTriJ-i» E{s) 

Again applying (5.3), 

1 ricc esxPn{s) 
GJx) = I ds. 

J / • 100 

Z7T2 J _ 4 v IriJ-in E(s) 

But the function 

£»(*) = 
p.w 

itself belongs to E, so that Theorem 4.2 may be used to obtain the 
properties of Gn(x). Set 

ƒ
00 

Gn{x — y)<t>(y)dy - 0(a) 
- o o 

ƒ 00 

G»(y)[*(*- y) -*(*)]<*?• 
-00 

For a fixed x and 5 > 0 write the integral In(x) as the sum of two 
others /» (#) and IJl'(x) corresponding to the ranges of integration 
| y| ^ 5 and \y\ >S , respectively. Then 
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| l'n(
x) I = m a x | <K# — y) -~ 4>(%) | 

by properties A and B of Theorem (4.2). Also 

\l'r!(x)\S2 sup \<Ky)\f ~Gn(y)dy 
— oo<y<oo J | j |>g 0 

2 °° 
^ — sup | <j>(y) | S al , 

0 -»<2 /<oo &=n-+l 

by property D of Theorem 4.2. It is thus clear that In (x) can be 
made small by choice of ô, I"' (x) by choice of n, so that 7w(x)—»0 
when n—» °o, as desired. 

The choice 6 = 0 was inconsequential, amounting essentially to a 
choice of origin. A case in which c^O will be treated in §7. 

6. Application to the Laplace transform. We now apply the fore­
going theory to Example B of §2. But let us first recall the following 
real inversion [6, p. 288] of the Laplace integral (2.4), 

(6.1) Urn- -F<"> ( — )( — ) = $(y). 
n-+oo n\ \ y l \ y ) 

It is valid, whenever (2.4) converges, for almost all x and certainly 
at points where <£>(#) is continuous. For example, for the pair *(#) 
= e-*, F(x) = (x + 1)-1 it becomes l i m ^ [l + (y/n)]-»-1 = er*. We 
shall show that (5.1) reduces to (6.1) in Example B. The function E(x) 
in the present case is 1/F(1— x). For, the Laplace transform of the 
kernel is 

ƒ 00 • » CO 

e~eVeve-~xydy = I e~yyrxdy = T(l — x), 
-co •/ 0 

— 00 < ff < 1. 

Since 1/T(1 — x) is a function of class E with c = 0, Theorem 5 is ap­
plicable.2 We need the familiar product expansion of the gamma 
function, 

r l̂l 1 )exlk
f 

r ( i - x) 
n J 

7 ~ S — ~" l oS n> n' 

Set 
2 We really need a slight modification of Theorem 5 since 5= —y in the present 

example. 

file:///yl/y
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PnO) -60-T)-
so that (5.1) is equivalent to 

(6.2) lim Pn(D)exF(ex) = $(<r*), 
n—»oo 

in the present case. But the left-hand side of (6.2) takes on an espe­
cially simple form arising from the equation 

(1 - D)exF(ex) = - e2xF'(ex). 

By induction 

A / D\ ( - l)n 

I I ( 1 )exF(ex) = ï—~ *(«+i)*F<»>(**). 

Of course w2* or e(log n)I> means translation of x through log» or multi­
plication of ex by n. Hence 

( - l)w 

Pn{D)exF(ex) = « ^ ^ « ^ ^ ( n ^ ) , 
»! 

and if e~x = y, (6.2) becomes (6.1), as predicted. 

7. The Weierstrass transform. If we denote the "source solution" 
of the heat equation by k(x, t), 

k(xf t) = (47r0-"1/2^-"a;2/4f, - o o < o ; < o o , 0 < / < o o , 

then equation (2.5) becomes 

(7.1) f(x) = k(xy 1) **(*). 

Recalling that the inversion function predicted by the operational 
calculus is the reciprocal of the Laplace transform of the kernel and 
from (4.3) that 

*-'y*(y> l)dy, 
- 0 0 

we expect that 

<rD%f(%) = * ( * ) . 

This operational equation was already observed by A. Eddington 
[2], who replaced e~~D2 by its Taylor development. However, this in­
terpretation is usually ineffective because the resulting series diverges 
for most functions ƒ(x). We employ a different method. 
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Equation (4.3) is valid for all complex s, so that if we replace x by 
—iD therein we obtain 

ƒ
00 

Again using (3.1) with a—ix, 

»'ƒ(*) - (4TT0-1 / 2 f ƒ(* + iy)e-""ii'dy. e-'^ 

This integral is clearly a complex integral evaluated along a vertical 
line in the complex plane. If we set x+iy = s it becomes 

ƒ aH-too 

x—too 

For all functions f(x) arising from equation (7.1) the integral (7.3) 
will be independent of the path of integration, and we accordingly 
make our definition more flexible by replacing the path of (7.3) by 
an arbitrary one. 

DEFINITION 7. The operator e~D* is defined as 

/

» c+t'oo 

. _ - _ c— too 

where c is a suitable constant. 
This definition should be compared and contrasted with (5.2). The 

continuous parameter t in (7.4) corresponds to the discrete one n in 
(5.2). The use of the parameter t<l in (7.4) amounts to the use of 
Abel summability on an integral that would diverge for certain func­
tions ƒ (#) when / = 1. 

We can now state our inversion result in terms of this operator. 
As in §5 we do so with simplifying but unnecessary restrictions on 
0(tf). 

THEOREM 7. If 4>(x) is bounded and continuous on (— <*>, oo) and 
if f(x) is its Weierstrass transform,, given by (7.1), then 

(7.5) e-D*f(x) = <K#), - <*> < x < oo. 

We sketch the proof. Inverting equation (7.2), we have 

1 C io° 
k(x, 1) = — ; I e8X+«2ds. 

2 T { J _-,-oo 
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If we compute the integral (7.4), c = 0 when ƒ (x) is replaced by k(x, 1), 
we have 

1 /• *°° 
e~tD2k(x, 1) = — : I e"+9*r-***dst 

2iciJ —ioo 

and this is k(x, 1 —t) as we see by inverting (4.3). Hence after validat­
ing the application of e~tl>2 under the integral sign (Fubini's theorem) 
one obtains 

ƒ 00 

*(* - y, 1 - t)4>(y)dy = *(*• 1 - 0 •*(*)• 

But this is the Weierstrass singular integral so familiar in the theory 
of heat conduction. It tends to <f>(x) as /—»1 —, and (7.5) follows. 

From the point of view of heat conduction etDi<j>(x) or k(x, t)*4>(x) 
is the temperature of an infinite rod t seconds after it was <f>(x) and 
the Weierstrass transform of 4>(x) is the temperature one second after 
it was <f>(x). This makes (7.6) intuitive: e~tD2f(x) is the temperature t 
seconds before it was f(x) or 1 — t seconds after it was <£(#)• 

8. Table of inversion operators. We conclude with a summary of 
the inversion operators mentioned in §2. Many others are treated in 
[4]-

A. 

B. 

C. 

D. 

E. 

Kernel G(x) 

«(*) 
e-e»ex 

(2*-)-1 sech (a/2) 

(4*)-1 i*r** 

(2/ir)K0(e
x)e* 

Inversion operator E(D) 

1 -D 

i /r( i - D) 

cos vD 

<r°* 
r2

DT-i[(l - D)/2] 

In Example C, the fact that the Stieltjes transform is the iterated 
Laplace transform expressed in convolution form becomes 

exl2F(ex) = e^&iex,2*e-'irxe^xl2*exl2^{ex). 

The corresponding relation for the inversion functions E(s) is the 
classical equation 

\ 2 7 \ 2 7 cos TS 

Example E is the Meier transform. 
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