
NORMED LINEAR SPACES OF CONTINUOUS FUNCTIONS 
S. B. MYERS 

1. Introduction. In addition to its well known role in analysis, 
based on measure theory and integration, the study of the Banach 
space B(X) of real bounded continuous functions on a topological 
space X seems to be motivated by two major objectives. 

The first of these is the general question as to relations between the 
topological properties of X and the properties (algebraic, topological, 
metric) of B(X) and its linear subspaces. The impetus to the study 
of this question has been given by various results which show that, 
under certain natural restrictions on X, the topological structure of 
X is completely determined by the structure of B{X) [3; 16; 7] ,1 and 
even by the structure of a certain type of subspace of B(X) [14]. 
Beyond these foundational theorems, the results are as yet meager 
and exploratory. I t would be exciting (but surprising) if some natural 
metric property of B(X) were to lead to the unearthing of a new 
topological concept or theorem about X. 

The second goal is to obtain information about the structure and 
classification of real Banach spaces. The hope in this direction is 
based on the fact that every Banach space is (equivalent to) a linear 
subspace of B(X) [ l ] for some compact (that is, bicompact Haus-
dorff) X. Properties have been found which characterize the spaces 
B(X) among all Banach spaces [ô; 2; 14], and more generally, prop­
erties which characterize those Banach spaces which determine the 
topological structure of some compact or completely regular X 
[14; 15]. These properties are defined in terms of concepts which 
are meaningful in all Banach spaces; in particular, no lattice [lO] or 
ring [8; 9; 11 ] structure is presupposed. 

I propose here to outline and supplement some recent results along 
the above two lines, using methods developed in [14]. In one or two 
instances details of proofs are given; these are brief and have not 
previously appeared in print. 

2. The mapping C(X). Let X be a completely regular topological 
space. The set of all real-valued, bounded continuous functions on 
X, with the usual laws of addition and multiplication by real num-
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bers, is made into a Banach space B(X) over the reals by defining 
||ô|| =supa;£=x | &(#)!• Let B be a closed linear subspace of B(X). 
Consider the following possibilities: 

(I) B is separating over X; that is, given x%, X2&Xt Xi^x^ there 
exists a &G5 such that b(xi)^b(x2). 

(II) Given x&X, and a closed set XiCZX not containing x, there 
exists a finite set &i, • • • , &»G5 and a 8>0 , such that, for each 
X\ÇzX\, | bi(x) — bi(xi) | è ô for a t least one value of i. 

(III) B is completely regular over X; that is, given # £ X and a closed 
set YC.X not containing #, there exists a & £ 5 such that b(x) = ||&||, 
supyeY\b(y)\<\\b\\. 

I t is easy to see that ( I II)-»(II)->(I) . If X is compact, (I) = (II). 
Now let B% be the conjugate space to B, provided with the weak-* 

topology, let E% be its compact [ l ; 4] solid unit sphere. For each 
x £ X , let x* be the point in E% defined by x*(b) =b(x) for all bÇ£B. 
The mapping C of X into E% defined by C(x)—x* for all xÇzX is 
always continuous, C(X) is a total subset of B%, and for each b(~B, 
ll&H =sup/^c(X) |/(6) I • C is one-to-one if and only if B satisfies (I). 
I t is a homeomorphism if and only if B satisfies (II). 

Given any Banach space B, there always exists a compact X such 
that B is equivalent to a closed linear subspace of B(X) satisfying 
(II) ; for example, X can be taken as E% in B%. However, the class 
of Banach spaces satisfying (III) with some completely regular X is, 
as we shall see, a proper subclass of all Banach spaces, and itself 
contains as a proper subclass the class of Banach spaces satisfying 
(III) with some compact X. We shall characterize both of these classes. 
Also, we shall see that a given Banach space B satisfies (III) with at 
most one compact X. 

3. Spaces completely regular over X [14; 15]. Let B be an 
arbitrary Banach space. Each b£zB is contained in a !T-set—that is, 
a subset of B maximal with respect to the property that for each of 
its finite subsets (&i, • • • , &n), || XXII = ]C||&*||- ^ n e intersections of 
J'-sets with Sf the surface of the unit sphere in B, are the maximal 
convex subsets of S used by Eilenberg [7]. For each T-set T we define 
a functional FT by the formula FT(b) = i n f ^ r ( | | & + / | | — |M|)« Each 
FT is continuous over B and is convex, and |i<V(&)| ^||fr||, with 
FT(t) = ||*|| for ^ r . FT is linear over B if and only if FT(b) = 
— Fvi — b) for all &G5. Also, FT is linear if and only if there exists 
a unique ƒ £ 5 ^ such that f(t) = ||l|| for all tÇ.T, and in this case ƒ = FT 
over B] this follows from a theorem on unique norm-preserving ex­
tensions of a linear functional, which is stated and proved in §8. Thus 
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if FT is linear, given any pointfCzE% different from FT there is a & £ £ 
such that the continuous function over B% denned by b according 
to b{F) = F{b) for all F<EBw has the properties b{FT) = | N | , Hf) 
<\\b\\ ; further, b(f) = -\\b\\ only if ƒ = -FT. If all the functionals FT 

are linear, they form a total subset M of B%, contained in Sw, such 
that for each 5£.B, ||fr|| =sup/^M |/(&)| ; B is equivalent to a closed 
linear subspace of B{M). If furthermore I f is the union of two dis­
joint closed antipodal subsets 0 and — Q, then B is equivalent to a 
closed linear subspace of B(ti) completely regular over 0. If M is 
closed in Ew, Q is compact. 

Conversely, let X be a compact space, and let 5 be a closed linear 
subspace of J3(X). For each J*-set r in B there is an x £ X such that 
either r = {b<E.B\b(x) = ||ô||} or r = {bGB\b(x) = - | | & | | } . Now as­
sume B is completely regular over X; then the # of the previous state­
ment is unique, and also every set of the form {&£J3| b{x) = \\b\\} or 
{bÇ.B\b(x) = — ||ô||} is a jH-set. We denote the T-sets corresponding 
to x by Tx and —Tx. A fundamental f act is that f or every ÔG5 and 
x&X, 

b(x) = inf (\\b + t\\ - |M|)=Fr.(»). 

It follows that each .FV is linear. The set of linear functionals FT, 
considered as points in Syy, is the union of two disjoint closed antip­
odal subsets, one of which is C(X) and the other —C(X). 

Thus we have the following set of necessary and sufficient condi­
tions that there exists a compact X such that a given Banach space B 
is equivalent to a linear subspace of B(X) completely regular over X: 

(1) All the functionals FT are linear. 
(Ai) (2) They form a closed subset M of £ ^ . 

(3) M is the union of 2 disjoint antipodal closed subsets £2 and 

- a 
Next, to study the case of a non-compact X, it is natural to 

at tempt to compactify X so as to reduce the problem to the com­
pact case. Let B be a closed linear subspace of B(X) satisfying (II). 
We define a compactification of X with respect to B to be a compact space 
X in which X is dense and such that all the functions in B are ex­
tendable so as to be continuous over X and form a set which is 
separating over X. Then there is a unique compactification of X 
with respect to B; it is simply the closure of C(X) in E%. Unfor­
tunately, if B is completely regular over X, it will not in general be 
completely regular over X (see §5 for an example), so that we can­
not completely reduce the problem to the compact case. Of course, if 
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B is the whole of B(X), X is the Tychonoff-Cech-Stone [17; 5; 16] 
compactification of X and B is c.r. over H. 

Let B be a closed linear subspace of B(X) completely regular over 
X. The sets Tx=* {bÇ£B\b(x) = \\b\\} and the sets — Tx are still T-sets, 
but there may be "free" T-sets not of such form. However, consider­
ing B as a subspace of B(X), each 2"-set is of the form 
Tx or —Tx for some x £ X . For each xÇ.X, b(x) can be evaluated by 
mit£.Tx (\\b+t\\ •—|M|)> s o that the functionals FTx and — Fr^ are 
linear. The set MQSw of all those functionals FT which are linear is 
not in general closed in E%\ but it is the union of two disjoint closed 
antipodal subsets ft and — ft, which respectively contain as dense 
subsets C(X) and — C(X). ft is homeomorphic to a dense subset of 
X, which is the whole of X if B is completely regular over X. 

Conversely, let B be any Banach space. If the set MCZSw of those 
functionals FT which are linear is large enough to have the property 
that, for each bÇiB, \\b\\ = sup/£M \f(b) | , and if M is the union of two 
disjoint closed antipodal subsets ft and —ft, then B is equivalent to 
a closed linear subspace of .B(ft) completely regular over ft. 

Thus a given Banach space B is equivalent for some completely 
regular X to a closed linear subspace of B(X) completely regular 
over X if and only if the set MCZSw of those functionals FT which 
are linear satisfies the following conditions: 

(1) for each bEB, \\b\\ = S U P / Ç M | / (6 ) | . 
(A2) (2) M is the union of two disjoint antipodal closed (in M) 

subsets, 

4. The whole space B(X). Necessary and sufficient conditions 
that B be equivalent to the whole of B(X) for some compact X can 
also be phrased in terms of the functionals FT [14]. They are as 
follows. 

(1) All FT are linear. 
(2) There exists a unit element eÇ_B\ that is, an element e of 

(A8) norm 1 such that | FT(e) | = 1 for all FT. 
(3) For each &iG5, there exists a b2C.B such that Fr(&2) 

= | FT(h) | for all FT for which FT(e) = 1. 
The sufficiency of these conditions is based on Kakutani's [lO] 

analogue for Banach lattices of the Stone-Weierstrass approxima­
tion theorem [16]; namely, if a closed linear sublattice of the lattice 
M(X) of all continuous functions on a compact X contains the 
constant functions and is separating over X, then it is the whole of 
M(X). Here the set of FT such that FT(e) = l, with the weak-* 
topology, serves as X. 
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Condition (1) can be replaced by 
(1) ' The linear extension of each T^-set in B is the whole of B. 

Condition (1)' is stronger than (1) for the general Banach space B. 
In fact, (1) ' does not usually hold even if B is equivalent to a sub-
space of B{X) completely regular over X, although, as we have seen, 
(1) does hold. 

Condition (2) can be replaced by 
(2) ' There exists an e^B such that for each bÇ^B either ||&+e|| 

=IH!+ior||MHI»ll+i. 
Condition (3) can be replaced by 
(3) ' For each &i, b2&B there exists a & 3£5 such that Frih) 

= FT{h) • FT(b2) for all FT such that FT{e) = 1. 
Obviously (3) ' enables us to use the Stone-Weierstrass approxima­

tion theorem. 
Clarkson's solution [ó] of the problem of characterizing B(X) con­

sists essentially of condition (2)', together with the demand that the 
half cone in B with vertex e and directrix E has the property that 
the intersection of any two of its translates is itself a translate. This 
latter condition is sufficient to define a lattice structure on B and to 
show that it is an (M)-space in the sense of Kakutani. 

The solutions given by Arens and Kelley [2] to the same problem 
do not appeal directly to any lattice theorem to guarantee that B is 
the whole of B(X). One of their sets of conditions consists essentially 
of (1) ' and (2) ' plus a condition which insures that there exists a 
b&B which "separates" any given pair of disjoint closed sets in X; 
this turns out to guarantee that B is the whole of B{X). Their other 
set of conditions is stated in terms of geometrical properties of E%, 
and involves a proof that the set C(X) in E%(X) is simply the set 
of extreme points in E%{X) (see also [13]). 

5. Examples. Here are a few examples to show the various possi­
bilities when B is completely regular over a non-compact X, and the 
more elegant results when B is completely regular over a compact X. 

Let X be the open interval 7r/4<#<37r/4 of the #-axis, and let 
B be the two-dimensional Banach space consisting of all the func­
tions b(x) = c sin x+d sin 2x as c, d range over the reals, with norm 
defined as s u p ^ x | b(x) | . The compactification of X with respect 
to B is the closed interval X= [7r /4^^^37r /4] . B is completely 
regular over X, but not over X; for every &£23 such that &(7r/4) 

"&|| has the property Ô(3TT/4) = - | |&| | . The sets | 6 6 S | 6 ( T / 4 ) 

b\\} and {ô£J3 | b(w/4:) — —1|&||} are jT-sets, but the corresponding 
f unctionals FT are not linear. The set M of those functionals FT which 
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are linear forms a subset of S%- consisting of two disjoint homeo-
morphic images of X whose weak-* closures are disjoint sets in Sw 
homeomorphic to X. 

Now let X be the interval 2 1 / 2 - K ^ l , and let B be the set of luuc-
t i o n s ^ ( ^ ) = ^ 2 + ^ w i t h | | è | | = s u p a ; e x | ô ( ^ ) | . H e r e X = [ 2 1 / 2 - l ^ x ^ l ] . 
è (2 i /2 - l ) = ||&|| if and only if d = -2c(2U*-l), c<0 , in which case 
b(l) = —1|&||. B is completely regular over X but not over X. How­
ever, whenever d< —2c(21/2 — 1) and c<0, we have b(l) = — |MI and 
- | | f t | | < K 2 1 / 2 - l ) < | | & | | . Hence {&G5|ô(21/2-~l) = ||&||} is not a 
ÜT-set, and the functionals FT are all linear; as in the previous ex­
ample they form a subset M of Sw consisting of two disjoint homeo-
morphs of X, whose weak closures are disjoint sets in Sw homeo­
morphic to 3f. 

If X~ [0 <x < 1 ], let B be the set of all continuous functions on X 
such that linia^o b(x) =lima;^i b(X) = 0. Here X is homeomorphic to a 
circle. B is completely regular over X, but not over X. The func­
tionals FT are all linear and form a subset of Sw whose closure in 
Ew is obtained by adjoining the origin in B%. 

The set of functions ax2+bx+c is completely regular over X 
= [ 0 < # < l ] , and also over X=[0^x^l]. The functionals FT are 
all linear, and form a subset of Sw closed in E\ consisting of two dis­
joint subsets each homeomorphic to X. 

6. Some classes of Banach spaces. Let 
]8 = class of all Banach spaces, 
/Si = class of Banach spaces satisfying (I) with some compact X, 
/?2 = class of Banach spaces satisfying (A2), 
/33 = class of Banach spaces satisfying (Ai), 
184 = class of Banach spaces satisfying (A3). 

Then we have seen that j S ^ O f t D f t D / ^ . These are all proper in­
clusions. 

Another class is that of all Banach spaces which have the property 
that all FT are linear. This class properly contains fa. In addition, it 
contains all euclidean spaces and all Hubert (inner product) spaces. 
The latter spaces are strictly convex, and for strictly convex spaces 
it can be shown that the linearity of all FT is equivalent to the 
existence of a Gateaux differential for the norm at every point of the 
space. 

7. The uniqueness theorem and relations between X and B(X). 
If B is completely regular over a compact X, we have seen that the set 
MCSw of functionals FT is the union of two disjoint closed antipodal 
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subsets each homeomorphic to X. If there exist two different de­
compositions of M into a pair of disjoint closed antipodal subsets, 
say S2, —12 and fi', — Q', it is easy to show that Q and Q' are homeo­
morphic. Hence a given Banach space can be completely regular 
over a t most one compact space X [14]. We say that B determines the 
topology of X. As a special case, if B=B(Xi)=iB(X2) for compact 
Xi, J!L2, then Xi is homeomorphic to X\ (Banach-Stone theorem) 
[3; 16]; "compact" can be replaced by "completely regular and 1st 
countable" [7]. 

Thus the problem naturally arises of translating properties of X 
into properties of B{X) or of subspaces of B(X) completely regular 
over X, and conversely. In this direction, the following theorems 
can be proved. 

If X is completely regular, B(X) is separable if and only if X is 
compact and metrizable [12]. 

If X is completely regular, B(X) contains a separable linear sub-
space completely regular over X if and only if X is separable metric 
[15]. 

If X is completely regular, B(X) is reflexive if and only if X con­
sists of a finite number of points [IS]. 

If X is completely regular, B(X) is ^-dimensional if and only if X 
consists of n points (n finite). 

X is connected if and only if there does not exist a decomposi­
tion of B(X) as a direct sum [7]. 

A separable metric space X is finite-dimensional if and only if 
there exists a finite-dimensional closed linear subspace of B(X) which 
is completely regular over X [ l 5 ] . If n is the smallest dimension of a 
euclidean space in which X is homeomorphically imbeddable, there 
is a closed linear (n+2) -dimensional subspace of B(X) containing 
the constant functions and completely regular over X. 

This last result indicates that topological properties of a compact 
finite-dimensional metric space should be translatable into purely 
metric properties of a finite-dimensional Banach space. For example, 
let I b e a closed subset (not on a circle or line) of the unit disc in 
the (x, 30-plane. Let Bx be the set of functions b — ai(x2+y2)+a2pc 
+azy+a4i on X, with ||fe|| = s u p x e x |&| • Then Bx is a closed linear 
4-dimensional subspace of B(X) completely regular over X. As X 
ranges over the subsets of the disc, Bx remains unchanged both 
algebraically and topologically, only its norm varies. 

Another result is the following, 
A compact space X is a Peano space (compact, locally connected, 
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connected metric space) if and only if B{X) is equivalent to a linear 
subspace B of B(I) (ƒ = closed interval) with the property that 
every jP-set in B(I) intersects B in a !T-set in B. 

This is a consequence of the following theorem. 
If Xi and X2 are compact spaces, there exists a continuous map­

ping of Xi onto X2 if and only if B{X2) is equivalent to a linear 
subspace B of B(Xi) with the property that every T-set in B(Xi) 
intersects B in a T-set in B. 

We prove this as follows. Let ƒ(Xx) = X2, where ƒ is continuous. 
The mapping F of B(X2) into ^(X x) given by b2-+b2fîor all b2GB(X2) 
is an equivalence between 5(X 2) and a closed linear subspace B of 
B(XX). A r-set in 3(Xi) is either of the form {&iG5(Xx)| &,(*i) 
= ||&i||} or l&iG^C-X'i)! &i(^i) = — ll&iH }. The intersection of such a T-
set with 5 is either {b2feB(X{) \ brffa) = ||&2||} or {b2feB(X1) \ b2f(xx) 
= — \\b2\\}. These are T-sets in B because they are the images under 
F of the sets {b2^B{X2)\ 6,(/(*i)) = | N I } or {b2^B{X2)\b2{f{Xl)) = 
— H&2II} which are T-sets in B(X2). Conversely, let F be an equiva­
lence between B(X2) and a linear subspace B of B(Xi) with the prop­
erty that every T-set in B(Xi) intersects B in a T-set in B. The map­
ping H which takes each T-set in B(X%) into its intersection with B is 
a mapping onto the set of T'-sets in B since each r-set in B (by Zorn's 
Lemma) is extendable to one in B(Xx). Let e = F(e2), where e2Ç.B(X2) 
is the function identically 1 over X2. Let ft be the set of functionals 
FTÇZB* corresponding to the set K of jT-sets in B which contain e, 
and let fti be the set of functionals FT in B*(XX) corresponding to 
the set of üT-sets H^^K). Then H induces a mapping /j(fti)=ft. If 
Ti is a r-set in JBCYi) intersecting B in T, Fr1(6) = -Pr(6) = ||6|| for 
all & £ J T ; since i ^ and i<V are both linear functionals over B of norm 
1, they are identical over B. From the definition of the weak-* 
topology, it follows that h is continuous. But ft is homeomorphic to 
X2, and fti is homeomorphic to X\. Thus h induces a continuous 
mapping of X\ onto X2. 

8. A theorem on extension of linear functionals. We give now a 
proof of the following result, a special case of which was used in §3. 

Let L be a linear substance of a Banach space 5 , and let ce be a 
linear functional over L of norm A. Then there is a unique norm-
preserving linear extension ƒ of a over B if and only if the functional 
F(b)='mfi£L [A\\b+l\\—a(l)] is linear, in which case f=F over B. 

PROOF. Over L,a — F. For the expression <4||&+/|| — a(l) takes on the 
value a(b) when 1= — ô, and for a fixed ô £ L this is its minimum 
value since -4| |6+/| | - a ( / ) è « ( 6 + Ö - a ( 0 =«(&). 

Now 
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-F(-b) = - mf [A||-b + l\\ - o(0] 

= - inf U | | - J - / | | +a(l)] 

= sup [-A\\-b — ;|| - «(J)]. 

Referring to Banach's proof [2] of the Hahn-Banach theorem, we see 
that if b is outside L every linear extension ƒ of ce of norm A must 
have the property — F(—b) ^f(b) SF(b), and also for each r satis­
fying — F( — b) SrSF(b) there is a linear extension ƒ of a with norm 
A and with f{b)—r. I t follows that if F is linear, ƒ is unique and 
equals F, and conversely if ƒ is unique, f=F. 
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