
HYPERGEODESIC CURVATURE AND TORSION 

DAVID B. DEKKER 

1. Introduction. A hypergeodesic curve1 on a surface satisfies an 
ordinary second-order differential equation similar to that for the 
geodesic curves except that the coefficients, instead of being Christof-
fel symbols, are taken to be arbitrary functions of the surface co­
ordinates. At a point of the surface the envelope of all the osculating 
planes of hypergeodesic curves of a family determined by such an 
equation which pass through the point will be a cone usually of 
order four and class three with its vertex at the point. If the cone at 
each point degenerates into a single line of a congruence of lines, then 
the family of hypergeodesics is the family of union curves2 relative to 
this congruence. Recently, a union curvature3 and a union torsion4 

have been defined relative to a family of union curves as generaliza­
tions of geodesic curvature and geodesic torsion. 

The following investigation deals with the differential equation for 
an arbitrary family of hypergeodesic curves on a surface and the 
definition of a hypergeodesic curvature and a hypergeodesic torsion 
relative to a family of hypergeodesic curves in such a manner that 
the definitions will reduce to those for union curvature and union 
torsion when the family is taken to be a family of union curves. A 
geometric interpretation of hypergeodesic curvature is given which 
generalizes the geometric interpretation for union curvature and 
geodesic curvature. Finally, a geometric condition that a hyper­
geodesic be a plane curve is obtained as a generalization of a theorem 
known for union curves. 

The notation of Eisenhart5 is used throughout except that Tpy is 
used for Christoffel symbols of the second kind with respect to the 
coefficients of the first fundamental form for the surface. The sum­
mation convention of tensor analysis with regard to repeated indices 
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will be observed with Greek letter indices taking on the values 1, 2 
and the Latin letter indices taking on the values 1,2,3. 

2. T h e differential equation of a family of hypergeodes ics . C o n ­
sider a surface 5 in ordinary space of three dimensions represented by 
the three equations xi = xi(u1

t u2) (i = 1, 2, 3) referred to a rectangular 
cartesian coordinate system. The functions x{ and their partial deriva­
tives of the second order with respect to the parameters u1 and u2 are 
assumed continuous at any point of the surface. The solutions 
u2~u2(ux) of an ordinary second order differential equation of the 
form 

d /du2\ du2 /du2\2 /du2\z 

(2.1) ( ) = A + B + C( )+D[ ) , 
dîiïydu1/ du1 \du1/ \du1/ 

in which A, B, C, and D are analytic functions of u1 and u2, are the 
curves of a two-parameter family of hypergeodesics. If ua = ua(s) 
(a = l, 2), where the parameter 5 is arc length, is a hypergeodesic of 
the family, then equation (2.1) takes the form 

( 2 . 2 ) eapu'au"e = A a?yu
fciu^uf\ 

in w h i c h en = 1, e2i = — 1, en = £22 = 0, a n d 

^111 = A, An2 + Am + Anl = By 

A122 + ^212 + AMI = C, A222 = D, 

and the primes indicate differentiation with respect to s. 
Under a transformation üa = üa{ul, u2) (a = l, 2) of surface co­

ordinates for which the Jacobian does not vanish, the differential 
equation 

ea^û,aû'^ = 1raPü,Tü,(Tüfp 

is obtained in the new coordinates, where 

_ d(û\ û2) T du<* duP duv dua d*uP 1 
(2.4) AT<rp = Aafiy Ca& • 

d(u\ U2) L düT dü« düfi düT düadüpJ 
It is clear, however, that Aapy is not in general a tensor. 

In order to express the equation (2.2) in tensor form, consider 
the geodesic curvature vector6 whose contra variant components pT are 

(2.5) p = u + TfiyU u . 

Substituting the values of u"r from (2.5), equation (2.2) becomes 
6 Eisenhart, loc. cit. p. 187. 
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(2.6) £aTw p = [Aa07 + eaTT(iylu u u . 

The left-hand member of this equation becomes a scalar if multiplied 
by g1/2, where g is the determinant of the coefficients of the first 
fundamental form, namely, 

g = e^giag20 

with 

« t 

and 

eu = l f e2i = - 1, e i i = e22 = 0. 

Hence, the differential equation may be written in the tensor form 

(2.7) eaTufapT = QapyU'vu'Pu'v, 

where eaT = g1/2eaT and the functions Çlapy of u1 and u2 are defined by 

T 1/2 

(2.8) Q«07 = €«7^7 + g Aapy. 

Since the left member of (2.7) is a scalar, so also is the right member. 
Consequently, the functions £2a/37 are the triply covariant components 
of a tensor of the third order ; that is, under a transformation of surface 
coordinates, 

_ duT du* dup 

"a /37 = *"T<ro > 

dû* dû** dût 

as may be verified by direct computation. Now equation (2.7) may 
be written 

(2 .9) €arU'apr = 0, 

in which the scalar Q is defined by the right-hand member of (2.7). 
To specialize the components Qapy to be symmetric in each pair of 

indices actually constitutes no restriction on the family of hyper-
geodesics to be considered. Employing this symmetry in (2.8) gives 

^211 ~ A112 = T n -f" T21, 

An2 - Aux = 0, 
(2.10) 2 i 

^212 ~ ^4122 ^ T22 + Ti2, 

^212 — ^221 = 0, 

which with equations (2.3) are found to have the unique solutions 
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(2.11) 

4 i n = A, 

Am « Am = (B - Vu - Tn)/3, 

(J5 + 2Tn + 2Tn)/3, 

An* « 2̂21 « (c + r2
2
2 + rït)/3, 

A122 - (c - 2r2
2
2 - 2r},)/3, 

^222 « # • 

Hence, a necessary and sufficient condition that 0 » ^ be a symmetric 
tensor in any pair of indices is that the functions A apy be given by the 
relations (2.11). 

3. Hypergeodesic curvature. The differential equation (2.9) is 
transformed into two differential equations by simply multiplying it 
through by the expressions e^g^u'* (5 = 1, 2), where eBfi~eôli/g1/2. 
The left-hand members of the equations so obtained reduce to —pô 

(5 = 1, 2) from the facts ^ , w ' % / ' = l , gT)?p
rw,' = 0, and a subtraction of 

gr^u'iu't — O (5 = 1, 2). Hence, a family of hypergeodesics can be 
represented by the two differential equations 

(3.1) X5 s p* + ^ „ « ' 1 0 = 0 ( 5 = 1 , 2 ) . 

The left members of equations (3.1) define the contra variant com­
ponents X5 of a vector which will be called the hypergeodesic curvature 
vector of a curve C given by ua=*ua(s). If Xô is a null vector along a 
curve, then equations (3.1) are satisfied and the curve is a hyper­
geodesic of the family, and conversely. 

I t is easily shown7 tha t yf defined by 

(3.2) it m - c ^ y ( 5 = 1,2) 

are the contravariant components of a unit vector which makes a 
right angle with the unit vector w'a, so that 

(3.3) €«a**'V - 1. 

Now, geodesic curvature8 K0 is defined by 

(3.4) K0 « € « i « V , 

which implies that 

(3.5) P* - Kglx\ 

so tha t (3.1) assumes the form 
7 Eisenhart, loc. cit., p. 136. 
8 Eisenhart, loc. cit., p. 187. 
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(3.6) X*s= (K0- Q)ff - 0. 

Therefore the hypergeodesic curvature vector X* makes a right angle 
with the unit vector u'a. 

Hypergeodesic curvature Kh will be defined by 

(3.7) Kh~eaiu'«\*t 

which by (3.6) and (3.3) gives 

(3.8) Kh^K0 - 0; 

that is, hypergeodesic curvature is geodesic curvature diminished by 
the scalar fi. With the definition (3.4) equation (2.9) may be written 

(3.9) K0 = Q, or K0 - Q = 0, 

so that a family of hypergeodesics is characterized by the property 
(3.9) ; namely, the geodesic curvature is equal to the scalar ft which 
is a function of u1, u2, un, and u'2 only. From (3.8) and (3.9) arises 
the following theorem which is a generalization of a corresponding 
theorem for geodesies: a necessary and sufficient condition that a curve 
ua~ua(s) be a hypergeodesic of a family is that the hypergeodesic curva­
ture along the curve be identically zero in s. 

4. The elements of the cone related to the hypergeodesics through 
a point. The elements of the cone enveloped by the osculating planes 
of a family of hypergeodesics through a point P of the surface S are 
to be determined in tensor form. 

If the curve ua — ua(s) is a hypergeodesic on the surface 5 given 
by xi^xi(u1

9 w2), then the osculating plane of the hypergeodesic at 
the point x*(wx(^), u2(s)) is given by the determinantal equation 

dx3' d2xk 

(4.1) € W ( * « - * * ) — - 7 7 - = 0, 
ds as2 

where the xl are the current coordinates. But from 

dx* i ,9 d2xk
 k „„ d2xk ,« ,p 

(4.2) — = x„u , —— = x,vu + u u , 
ds ds2 duaduP 

the Gauss equations9 

(4.3) 7 — 7 7 " rlfi*>r + d*pX , 

and equations (2.5), equation (4.1) becomes 
9 Eisenhart, loc. cit. pp. 215-216. 
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( 4 . 4 ) €ijk{$ — X)Xi<rU (p ff,T + dapU U X ) = O, 

where the -X? are the components of the normal unit vector to S a t P , 
and the dap are the doubly covariant components of the second funda­
mental quadratic tensor of the surface. Since 

(L K\
 i k — *; k 

and by use of (2.9), equation (4.4) may be written 
i k 

(4.6) €,/*(* - X ) \ ~ ~ O + xlX KnU 1 = 0 , 

where the normal curvature Kn is defined by 

(4.7) Kn= da&'au'*. 

Differentiation with respect to each of the parameters u'1 and ul% 

gives the two equations 

i h 

(4.8) ««,»(* - * ) - ^ - — r + »U U„ — + «' —-^ = 0 
L g1/2

 3M'T (. du'T du'T ) J 
(r = 1, 2). 

Since Knu'a and Ö are homogeneous of degree three in un and u'2, 
Euler's relation for homogeneous functions shows that the three 
planes given by (4.6) and (4.8) are coaxial. Consequently, the char­
acteristic lines of the envelope of the one-parameter family of 
osculating planes (4.6) are the intersections of the planes given by 
(4.8). 

The direction numbers of the normals to the planes (4.8) are 

dtl / dKn\ j k 

\ dunJ 
dQ / dKn\ , 

( 0Kn\ ƒ k 

Kn + un——Uni*x,îX 

+ ( u'2 ~TT ) **i**>*X* (™ - !> 2> 3), 

(» = 1, 2, 3), 

since eijkx,{x^/gll2 = X\ The direction numbers ch of the intersection 
of the two planes (4.8) are ch = ehmnambn, which by neglecting zero de-
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terminants, interchanging columns, and renaming dummy indices 
when desirable, become 

K aO / dKn\ dtl / dKn\) m j k 
( u'1 ) ( Kn + u'1 * ) \ X enikxtlX 

c h M du'2) du'2\ du'1/) ' 

( 30 / dKn\ dQ / dKn\) m i h 

/ dKn\f dKn\\ f k r 91 

Using the facts eij&,\xtiX
k = gli*, XiXi = lf x1

i
aX

i = Of and a well 
known formula for the simplification of a triple cross product of 
vectors gives 

hmn m j h h 
e X enjkX,iX = x,i, 

hmn m i k h 
(4.9) € X €njkX,2X = X,2, 

hmn i k r s 1/2
v
h 

Euler's formulas for the homogeneous functions Kn and Q are 

dKn dKn dû dQ 
(4.10) u'1 + u'2 = 2Kn, u'1 + u'2 3Q. 
V J du'1 du'2 du'1 du'2 

Use of (4.9) and (4.10) reduces the expression for ch to the simple 
form 

(4.11) 

» / dKn dÜ\ h / m dKn\ H 
c = 31 Q Kn I x,i + 31 Kn Q J xti 

\ du'* du"/ \ du'1 du'1) 
+ 3g

1/\Kn)*Xh, 

giving ch as a single-valued function of the point (w1, u2) and the 
direction u'1, u'2, except at points and directions on the surface for 
which both Kn = 0 and 0 = 0. In this case there is no unique plane 
(4.6) which has contact of the second order with the hypergeodesic 
in the direction u'a for which Kn = 0 and 0 = 0; that is, all the planes 
containing the tangent line to this hypergeodesic will have contact 
of the second order with it. Consequently, the tangent line may be 
considered an element of the cone and in an asymptotic direction 
since Kn = 0. 
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At a point (u1, u2) and in a direction u'1, u'2 such that Kn — 0 and 
Q?*0, (4.11) has the form 

/ . .^ * 1/2 ccB àKn h 
(4.12) c - 3 0 * e - ^ * , « -

Now the vectors # '" and eaBdKn/du'P are in the same direction, as is 
evident from the fact that the sine of the angle between the two 
vectors is zero since the cross product 

aB dKn n s àKn ,y dKn n 

7 du'* du'* du'y 

Therefore, also in this case the element of the cone is tangent to the 
surface in an asymptotic direction. 

At a point (ul
t u2) and in a direction un, u'2 such that if» 5*0, (4.11) 

may be written 

(4.U, «'-^^'[.-^(^)i+4 
If we discard the nonzero multipliers, the expressions for ch in (4.12) 
and (4.13) are replaced by 

(4.14) c = r ^ xla {Kn = 0, Q ̂  0) 

and 

(4.15) f-r-xia + X" (üTn^O), 

where 

(4.16) r« m é« — ( — ) (IT. 5* 0) 

defines the contravariant components of a vector which is the pro­
jection of ch onto the tangent plane to the surface. The assumption 
that the surface be expressible with the asymptotic curves as a co­
ordinate net insures that in (4.14) dKn/du,(3 — 0 for both /S = 1 and 
j3 = 2 is impossible; so (4.14) will have meaning. 

5. A geometric interpretation of hypergeodesic curvature. I t will 
be shown that the hypergeodesic curvature of a curve C, ua = ua(s), 
is the curvature of the curve C' which is the projection of C upon the 
tangent plane at the point P , the lines of projection being parallel 
to that element of the cone determined by the direction u,a at P . 

h 
c 

h 
C 

Ya s 

aB OJ &n h 

du'» 

a h 
885 f #>a 

d 

du'* 

+ xk 

\Ëï) 
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Let S' denote the cylindrical surface consisting of the parallel 
lines of projection. If 1/R is the normal curvature of S' in the direc­
tion of C at P, and a is the angle between the principal normal to C 
and the normal to 5 ' at P, then by the theorem of Meusnier 

(5.1) e/R = p"1 cos a, 

where e= ± 1, and p"-1 is the curvature of C at P. Also, if 1/r is the 
curvature of C" at P, and if j3 is the angle between the principal 
normal to Cf and the normal to S' at P, then 

(5.2) e/R~ r^cos/?. 

After eliminating R from these two equations, it is found that 

cos a 
(5.3) e/r = 

p cos /3 
Computation of cos a and cos ]8 yields the formulas 

(5.4) cos a = ~ P [# a - 2£M€7^'V] (2£n ^ 0) 
Z sin 4> 

and 

(5.5) cos/3 = —^— (üTn^O), 
L sin $ 

where 0 is the angle between the vector c\ as given by (4.15), and the 
unit tangent vector xt\u

f° to the curves C and C', and L is the length 
of the vector c\ Now, by (4.16) and the fact that Ü/Kn is homogene­
ous of degree one in the parameters u,a> it can be shown that 

(5.6) 67«w'V = Q/Kn (Kn?éO). 

Substitution of the formulas for cos a and cos j3 into (5.3) with use 
of (5.6) gives 

(5.7) e/r - K0 - ti m Kh (Kn ^ 0), 

that is, the curvature of the curve C' is exactly the hypergeodesic 
curvature of the curve C whenever the curve C is not in an asymp­
totic direction. When the curve C is in an asymptotic direction at P, 
the element of the cone determining the direction of the required 
projection of C will lie in the tangent plane, and consequently will 
not give a proper projection of C onto the tangent plane. 

6. Hypergeodesic torsion of a curve. The torsion at P of the hyper-
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geodesic ua=*ua(s) having the same direction as the curve C a t P will 
be called the hypergeodesic torsion TK of C a t the point P . 

Let a\ j8% y\ be the tangent, principal normal, and binormal unit 
vectors of the hypergeodesic in the direction of C a t P. Since the 
principal normal j8* of this hypergeodesic lies in the plane of a* and c*, 
the element of the cone given by (4.15), it follows that 

(6.1) 0 « « aat + bc*, 

where a and b are to be determined. Multiplying (6.1) by a1 and 
summing gives 

(6.2) a = — bcla{ = — bL cos 0, 

and multiplying (6.1) by j3* and summing gives 

(6.3) 1/b - j8V = L sin 0. 

Substitution of the values of a and b obtained from (6.2) and (6.3) 
into (6.1) yields 

(6.4) /3* = csc0 cos 0a*' . 

The restriction tha t Kn5*0 occurs in (6.4) since in general a hyper­
geodesic in an asymptotic direction has c* in coincidence with a* 
making 0 = 0 so that (6.4) would be meaningless. 

From the Frenet-Serret formula dyt/ds—Thfi* multiplied by /?** and 
summed arises 

dyi 

(6.5) r * - j 8 « - p . 
as 

Now 7» is given by €<y*oĵ 8*f which by aJ'=dx3'/ds and (6.4) reduces to 

dec3 G 
(6.6) yi = esc 0€</» - - • 

ds L 
Differentiation of (6.6) with respect to s yields 

dyl d<f> dx* ch d2x* ch 

- — = — CSC 0 COt <t> — €ijk —; + CSC faijk —— ~ 
, _ as ds ds L ds2 L 
(6.7) 

dx> d rckl 
+ CSC(t*iik17 7shï 

By the substitution of the expressions for /3* and dyi/ds1 omission of 
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the zero determinants, and a change of dummy indices, (6.S) becomes 

à dx'Td /ck\ d2xl 
(6.8) rh = « c . * „ T - [ - ( - ^ j - c o s * - j . 

Since the components ck/L are scalars relative to transformations 
of surface coordinates, the partial derivatives of ch/L with respect to 
ua are the same as the covariant derivatives of ck/L with respect to 
ua\ therefore, the derivative of ch/L with respect to 5 may be written 

d/ck\ /ck\ d /ck\ 

From (4.15) the covariant derivative of ck/L takes the form 

/ck\ r» k 1 * / A f t / 1 \ ft 

W- = T*"« + Tx'a + Kl)'aX* + \lrx ' 
which, by use of the Weingarten and Gauss equations10 

may be written 

v h j "»* * * j v * 
A,« = — dayg X,0, X,„0 — dapX , 

(6.10) (j\.-oLx*, + bmXh, 

where a£ and ba are defined by 

e / A l * 
amm\Tr~Td,ni • 

r> / 1 \ 

Also, the partial derivatives of ck/L with respect to u'y are given by 

d /ck\ d /rP\ » d / 1 \ * 

From (2.5), (4.2), and (4.3) it is evident that 

d2xk 0k h 
(6.13) ^p\^+KnX . 

ds2 

Hence, from the relations (6.9) through (6.13) it follows that 
10 Eisenhart, loc. cit. pp. 216-217. 
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d/ch\ d2xk 

( — ) — COS ó 
ds\L/ ds2 

(6.14) - j[<£ - j p>] 4 + [»„ - j *.] X j u'* 

in which use was made of the formula cos </> = g8a(r
8/L)u'a 

= (ra/L)u'". 
Substitution of (6.14) in (6.8), if one uses (4.2) and (4.15) and 

neglects the zero determinants, gives 

( i i h f* f fa "I 
Th = CSC2 tf>Ujh < XrfXysX U'S \ba Kn\ Uta 

+ xVX(l)«'«[aô
a-^^]«'« 

which by the fact that e^x^sX16 = ep$ and by a rearrangement and 
simplification of terms becomes 

CSC20 ƒ a fi fa r 0 fi , ) ,« ,3 
n = — m y ba - aa +— [p - r Kn]>u u 

(6.15) L l Z j 

CSC2 0 a A ny ,8 
€05 (r )u u . 

L2 ' du'yX J 

However, for a hypergeodesic of the family under consideration it 
follows from (3.4), (5.6), and (3.9) that 

(6.16) epsipP - r*Kn]u'* « - K0 + 0 - 0; 

and from (4.16) it follows that 

«i (ri>)u"yu'* = tfitf* ( ) « ' V 

- - M ' 8 — T — f — V " 7 ! . 
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or, since d(Q/Kn)u"y/du'y is homogeneous of degree zero in the 
parameters u'a, 

(6.17) €*a — r (r*)«"V a « 0. 

Therefore, (6.15) is reduced to 

(6.18) n = €^s{r 6« — aa\u u , 

which, by the definitions (6.11) of a£ and ba, may be written in the 
final form 

esc2 <f> ( J" / 1 \ § rY 
TA = 6/38 

(6.19) 

-[(r)"-T̂ "]}"'"""-
The analytic expression (6.19) for the hypergeodesic torsion at P 

of the curve C with direction u'a, not an asymptotic direction, is a 
function of the point P , the direction #'", and of course the particular 
family of hypergeodesics under consideration. Therefore, all curves C 
with the same direction u'a a t P will have the same hypergeodesic 
torsion at P relative to the family under consideration. 

7. A geometric condition that a hypergeodesic be a plane curve. 
In order to obtain a geometric condition equivalent to the condition 
that the torsion of a hypergeodesic be zero, namely that the expres­
sion (6.19) vanish, consider the developables of the complex of cone 
elements and their intersections with the surface. If only a very 
special set of developables is admitted, then the differential equation 
of the net of curves of intersection of these developables with the 
surface will be precisely the expression (6.19) set equal to zero. Hence, 
a hypergeodesic not in an asymptotic direction will be a plane curve 
if and only if it is a curve of this special related intersector net of the 
complex of cone elements of the family of hypergeodesics under con­
sideration. The word net is used here in a more general sense to mean 
a set of curves consisting of two or more one-parameter families of 
curves. 

To arrive at the differential equation of this special intersector net, 
a point with coordinates xiJrtci/L is taken on the line of a cone 
element through P , and the point P is allowed to move along a curve 
C, wa = wa(s), for which the point xi+tci/L will describe a curve 
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tangent to the line of the cone element through P . That is, x{+tc*/L 
will generate the edge of regression of a developable. This develop­
able will belong to the desired special set if cl/L a t P is taken as only 
that cone element which corresponds to the values ufa for the curve C. 

The above mentioned tangency to the cone element requires that 

( cl\ / c * \ cl cl 

xl + / — J = dx* + tdl — H dt^m — j 
where m is to be determined. Multiplication by cl/L and use of 
(c'/Z,) (<;*/£) = 1 and (c^^d^/L) = 0 gives m^dt+i^/Vjdx1 so that 
(7.1) after a division by ds becomes 

dxl cl cJ' dx3' d /cl\ 
(7.2) + / _ ( _ ) = 0. 

ds L L ds ds\L/ 
Replacing the derivatives with respect to 5 by use of the relations 
(4.2) and (6.9) and multiplying by {cl/L)^ yields 

+ [(ï>(r)^+©*£(r)<H 
From (4.15) and (6.10) it follows that 

— )>P%,a = (ö/50?*8 + bpX%)x,a = 00&«, 

(7.5) — x]fi = f — x]a + — X) x]0 = — gafil 

(7.6) ( 7 7 , a \ T / ,/3 " a a â ^ T "^ Jaô/3' 

\Lr du'«\L/ ** du'"\L)f du'"\L/ 

and 

(7.8) — f — L = — ajg«7 + — h = 0, 

where the zero in (7.8) occurs since covariant differentiation of 
(cV£)(cVL) = l gives (cVL)(cyz,),0 = O. Therefore, (7.3) reduces to 
the two equations 
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apgàaU + [{dad^gar + bj>$}u 

(7.9) + {^Md+b>MBu''a}=0 

08 = 1, 2). 

Eliminating t from these two equations gives the determinantal 
equation 

(7.10) 

+ {-^(f)-^(r)}«'1--
The part of (7.10) involving u,fy may be written, after replacing 

be by — r 'a 'g^ as obtained from (7.8), in the form 

(7.11) <*4w~[-£-r(£)-''-^(})]«'v" 
However, 

(7.1z) e a ^ = ae , e &«$,„ = geav, 

where a^eyra\a\ and g=07rg7igT2; so that after some simplification 
(7.11) may be written 

ag dr1* 
— ear, T «'««"*, 

which vanishes by (6.17). Consequently, equation (7.10) is reduced to 

e apgia[aya*g*T + byb€\u u = 0 , 

which by replacing be as obtained from (7.8) and by use of (7.12) 
becomes 

^gea<r[ay — r by\u u = 0 . 

If we discard the nonzero factors a and g1/2, and if we use the fact that 
g1/2^a<r= — gll2eaa— —e<ray the differential equation of the special inter-
sector net of the complex of cone elements takes the form 

(7.13) effa[r by — ay]u u = 0 . 

When equation (7.13) is compared with the formula (6.18) it is 
apparent that a hyper geodesic not in an asymptotic direction is a plane 
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curve if and only if it is a curve of the special inter sector net of the complex 
of cone elements.11 

This result may be stated in a purely geometric manner as follows : 
a hyper geodesic not in an asymptotic direction is a plane curve if and 
only if the one-parameter family of cone elements, which are the elements 
of contact of the osculating planes of the hyper geodesic with the cones, 
constitutes a developable. 

The differential equation (7.13), after use of (6.11) and (4.16) and 
clearing of fractions, will in general be homogeneous of degree eight in 
the parameters u,<x\ consequently, the differential equation is of the 
first order and the eighth degree. Therefore, the special intersector net 
in general has the property that through any point on the surface pass 
eight curves of the net. However, there are many cases of families 
of hypergeodesics for which an equation of lower degree than eight is 
obtained. Such is the case when the family of hypergeodesics under 
consideration is a family of union curves. 

8. Union curves. A family of union curves is a family of hyper­
geodesics for which the osculating planes of all curves of the family 
through a point on 5 form an axial pencil. In this case the cone de­
generates into a line of a congruence, one through each point of the 
surface and not in the tangent plane. If the direction cosines £* of 
the lines of congruence are 

(8.1) s'-p'xl + qX* ( ? > 0 ) f 

with p° and q as functions of u1 and u2 alone, then from (4.15) it 
follows that for a family of union curves 

p* rff 1 
(8.2) r* = —, — - f , — « j , 

q L L 
so that, by (5.6), £2 must have the form 

(8.3) Q = Knea(,u'« — • 

I t is apparent that for a family of union curves the factor Kn may 
be discarded from equation (4.6) of the osculating planes, since fi has 
Kn as a factor. Therefore, for a union curve in an asymptotic direction 
equation (4.6) can be considered to define a unique osculating plane 
which will contain the line £* of the congruence. Hence, the difficulties 

11 A generalization of a corresponding theorem first proved for union curves by 
Sperry, loc. cit. p. 220. 
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and exceptions which occur in the asymptotic directions for a general 
family of hypergeodesics are eliminated in the case of a family of 
union curves by taking (8.3) to define 0 even for Kn = 0. 

Now, (8.3) is stated as a theorem as follows: a necessary and suffi­
cient condition that (3.9) be a differential equation of the family of union 
curves relative to the congruence £* is that the scalar £2 be given by (8.3). 
Substitution of the expression (4.7) for Kn and the expression 
Qapyu'au'0u'y for Ö in (8.3) yields a non-symmetric form for Ba^7, 
namely, 

p° 
(8.4) 0a)3<y = «acr dpy. 

2 

When the value of Q in (8.3) is substituted in the expression (3.8) 
for hypergeodesic curvature, the result is an expression for union 
curvature Ku as found by Springer; namely, Ku = KQ — Kn€a<Tu'a pff/q. 
Also, by use of (8.2), the expression (6.19) for hypergeodesic torsion 
reduces to the expression for union torsion rw as found by Springer; 
namely, 

TU = esc <j>e^[p [q,a + pyday] - q[pia — qdayg
y ]}u'au' . 

Likewise, the differential equation of the intersector net of the con­
gruence £* obtained from (7.13) after a multiplication by q and use of 
(6.11) and (8.2) is 

<*« {/[?,? + P dey] - q[p*y - qdypg a]}u,aun = 0, 

which is homogeneous of the second degree in the parameters un 

and u'2. Consequently, in the case of a family of union curves the 
intersector net has only two curves through each point of the surface 
instead of eight.12 

The geometric interpretation of union curvature is the same as that 
for hypergeodesic curvature with the one simplification that the 
method of projection (parallel to £* at P) is a function of the point P 
only and not the direction ufa. 

9. Geodesies. If the congruence £* for a family of union curves is 
normal to the surface, then the curves are the geodesic curves of the 
surface. The congruence is normal if and only if 

(9.1) P"m0, qml ( « = 1 , 2 ) . 

12 The curves of this net were originally called the torsal curves relative to the 
congruence by Sperry, and later referred to as T-curves by Lane and more recently as 
curves of the intersector net by Springer. 
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From (8.3) it is apparent that the property (9.1) is equivalent to the 
condition that the scalar Ö be identically zero. As a result, the fol­
lowing theorem may be stated: a necessary and sufficient condition 
that a family of hypergeodesics defined by equation (3.9) be the family of 
geodesies is that the scalar Q be identically zero in ul, u2

t un, u'2, or 
what is equivalent^ that the symmetric components Çla$y be identically 
zero in u1 and u2. 

It is observed then from (3.8) that hypergeodesic curvature reduces 
to geodesic curvature when the family of hypergeodesics is the family 
of geodesies. Also, the geometric interpretation of hypergeodesic 
curvature reduces to the correct geometric interpretation for geodesic 
curvature, and the expression (6.19) for hypergeodesic torsion will 
reduce to the expression 

for geodesic torsion18 rg. 
From the above discussion it is seen that hypergeodesic curvature 

and hypergeodesic torsion are proper generalizations of geodesic 
curvature and geodesic torsion since they are identical when the 
family of hypergeodesics under consideration is taken to be the 
family of geodesies. 

UNIVERSITY OF WASHINGTON 

13 Eisenhart, loc. cit. p. 247. 


