
ON MINKOWSKI BODIES OF CONSTANT WIDTH 

PAUL J. KELLY 

A metric set is entire if the addition of any point to the set increases 
the diameter. A convex body has constant width if all pairs of parallel 
supporting planes are the same distance apart. These concepts are 
known to be equivalent in euclidean space.1 The present paper shows 
that they are also equivalent in a minkowski space. 

A proof for this equivalence for the minkowski plane was given by 
Meissner.2 He showed also that two curves of the same constant width 
have the same circumference, and that a three-dimensional body of 
constant width has plane sections of constant width, in terms of the 
corresponding section of the minkowski sphere as plane indicatrix. 
However, Meissner's three-space proof for the equivalence of entire-
ness to constant width is incomplete.8 He assumed, moreover, that the 
indicatrix had no singular points. The equivalence here is shown for 
the w-dimensional case with the assumption merely that the indi­
catrix is convex. 

In a euclidean En space let C be a closed, convex hypersurface with 
0 as center. In terms of C as indicatrix let a minkowski distance be 
defined in the usual way to make the space an Mn.A 

Let r and s be half-rays emanating from 0 at an angle 0 and let 
Xr, X, be the euclidean lengths of the minkowski radii of C in these 
directions. Then sm(r, s), a positional sine with respect to C, is de­
fined to mean XrX, sin 0.5 

LEMMA. If r, s, t are half-rays through 0, which lie in a plane, with s 
between r and t (in terms of an angle not greater than ir) then sm(r, s) 
+sm(s, t) èsm(r, t). 

If Xi, X2, Xz are the end points of radii Xr, X8, X*, then from the 
convexity of C it follows that the euclidean area of AOX1X2 plus the 
area of A0x2xz is not less than the area of AOxiX*. Since the area of 

Received by the editors August 16, 1948. 
1 Bonnesen and Fenschel, Theorie der konvexen Kôrper, Ergebnisse der Mathe-

matik, 1934, p. 128. Jessen, Über konvexe Punktmengen konstanter Breite, Math. Zeit. 
vol. 29 (1928) pp. 378-380. 

2 E. Meissner, Über Punktmengen konstanter Breite, Vierteljahrschrif t der Natur-
forschenden Gesellschaft, 1911. 

8 This was already noticed in the references under footnote 1. 
4 Bonnesen and Fenschel, cf. footnote 1, p. 23. 
5 This was taken from a more general minkowski sine function defined by H. Buse-

mann who has in preparation a paper on the subject. 
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AOXi-X^jis (1/2) sm(r, s), and similarly for the other terms, the lemma 
follows. 

THEOREM. If K is a body in Mn space which is entire, in terms of the 
Minkowski metric, it is of constant width, in terms of this metric, and 
conversely. 

PROOF. (1) Let K be entire. Assume it is not of constant width. 
(2) I t is easily shown that K is convex and that its diameter is its 

maximum minkowski width.6 Take O interior to K and let H and E 
be the euclidean supporting functions of K and C (C plus its interior). 
If £ is a unit euclidean vector, the minkowski distance between the 
supporting planes of K in the direction £ is given by W(%) = [H(£) 
+H(—g)]/E(t;).7 From (1), W(^) will assume a maximum and a 
minimum value. 

(3) Let K* be the euclidean polar of K with respect to the unit 
euclidean sphere ("polar," throughout, will refer to the unit euclidean 
sphere). To a point U of K* there corresponds a unit euclidean vector 
£ in the direction from 0 to U, and a width, as in (2) W(£). Points of 
K* will be called maximal or minimal whenever the corresponding 
width is maximal or minimal. Since W(£) = W( —£), to each U of K* 
there is a counterpoint U' on K* in the direction —£ and to which the 
same width corresponds. 

(4) If K* contains a non-maximal, extreme point, then the assump­
tion in (1) is false. For suppose U0 such a point. From continuity, Uo 
has a neighborhood of non-maximal points. Let a plane 7r, at a dis­
tance ô from Uo, cut K* into two parts and let K* be that part sepa­
rated from Uo by 7r. Since K* is properly contained in K*, then K\, the 
polar of Kf, properly contains K. Since the width of K\ differs from 
that of K only in the neighborhood of a non-maximal direction, it 
follows from continuity that if this neighborhood, that is, S, is 
chosen sufficiently small, then the maximal widths of K and K\ will 
be the same. Hence the diameters will be the same. Since K\ properly 
contains K, this contradicts the entireness of K and the assumption 
in (1) must be false. 

(5) If Ui, U2, Uz are points of K* which are collinear, in that 
order, and which have collinear counterpoints, then Wfa) 
è m i n [W(£i), W(£3)]. We prove this as follows. 

(5.1) Let C* be the polar of C. This is again a central, convex 
body and can be used as indicatrix for a second minkowski metriza-
tion of En. Let | «,-| * represent the minkowski distance, with respect 

6 Cf. H. Busemann, Intrinsic area, Ann. of Math. vol. 48 (1947) pp. 234-267. 
7 Ibid. 
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to C*, from 0 to £/t-, | w,-| the corresponding euclidean distance, Xt- the 
euclidean length of the radius of C* in the direction fa, and 0^ the 
angle from fa to fa. By definition, then, |w^| =Xt|«<|*. In this nota­
tion, the fact that the euclidean area of AOu\u% equals that of AO U\ U% 
plus that of AOU2Uz can be expressed as XiX3| ui\ *| w8| * sin Bn 
=XiX2|wi|*|w2|* sin Öi2 +X2X31 ^21 * I ^31 * sin 023. Using the positional 
sine of the lemma (now with respect to C*), the above relation can 
be put in the form 

1 1 sm (fa, J2) 1 sm (£2, fa) 

u2 
|* | u31* sm (fa, £3) \ux\* sm (fa, £3) 

(5.2) Directly, from the definitions of minkowski distance and polar 
body, we have |«< |*« [H(ïi)]-i/[E(ïi)]-i = E&)/H(Çi), * = 1, 2, 3. 
Hence the last relation in (5.1) can be written 

H (fa) = g(ft) sm (fa, fa) ff (fa) sm (fa, fa) 

£(£2) Eft,) sm (fa, £3) £fti) sm (fa, fa) ' 

(5.3) From the linearity of the counterpoints, Z7/, the same area 
argument can be applied to the three triangles 0 £/<£/ƒ, i^j. The fact 
that C* is central, and the equality of vertical angles, allows the 
conclusion to be put in the form 

H{- fa) JT( - fa) sm (fa, fa) ff(- fa) sm (fa, fa) 

E(fa) Eft,) sm (fa, fa) E(fa) sm (fa, fa) 

and this, added to (5.2), gives 

i*r/,N ^ & ) sm (fa, fa) W(fa) sm (fa, fa) 
^(fa) = 7T~Ts r sm (fa, fa) sm (fa, fa) 

or 

sm (fa, fa) + sm (fa, fa)" 

sm (£1, £3) 

From the lemma, the last factor above is equal to or greater than one, 
which establishes (5). 

(6) If K* contains no non-maximal, extreme points then the as­
sumption in (1) is false. For suppose every extreme point is also a 
maximal point. Being convex, K* is the union of all convex simplices 
whose vertices are extreme points.8 Then every nonextreme boundary 

Bonnesen and Fenschel, cf. footnote 1, p. 9. 
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point lies on a simplex, of dimension equal to or less than n — 1, which 
has maximal vertices. From (5), the edge points of this simplex must 
be maximal and this, again from (5), implies the face points must be 
maximal. Hence all the boundary points must be maximal, which is to 
say that only the maximal width is assumed, or that K is of constant 
width. 

(7) Since (4) or (6) must hold, the assumption in (1) is false, and 
K is of constant width if it is entire. 

(8) The counter equivalence, that if K is of constant width it is 
entire, is easy to establish and can be argued exactly as in the 
euclidean case. 
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