ON THE NUMBER OF POSITIVE INTEGERS LESS THAN «x
AND FREE OF PRIME DIVISORS GREATER THAN «x°

V. RAMASWAMI

Dr. Chowla recently raised the following question regarding the
number of positive integers less than x and free of prime divisors
greater than x°, which number is here denoted by f(x, ¢): For every
fixed positive ¢, is lim inf .., f(x, ¢)/x>0?

This paper, while incidentally answering this question in the
affirmative, proves more, in fact the best! possible result in this di-
rection, namely:

THEOREM A. A4 function ¢(c) defined for all ¢>0 exists such that
1) ¢(c) >0 and is continuous for ¢>0;
(2) for any fixed ¢

f(=, ©) = x(c) + O(«/log x)

where the “O” is uniform for ¢ greater than or equal to any given positive
number.

Notation. The following symbols are used for the entities men-
tioned against them:

P, prt any prime.

S(x, p): the set of integers less than x each divisible by p and free
of prime divisors greater than p.

T(x, p): the set of integers less than x each free of prime divisors
greater than p.

N[K]: the number of members of K, where K denotes any finite
set of integers.

F(2): Zp§¢ (1/p) where p runs through primes.

Preliminary lemmas.
LemMmA 1. For c=1, the theorem is true, and
f(x, ©) = x¢(c) + O(1).
Proor. This is obvious. In fact, for these values of ¢, ¢(c) =1, and
| (= 0) = 20(9)| = 1.
LeEMMA I1. If p15£ps, the sets S(x, p1) and S(x, p2) are distinct, and
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1 The “O” of the theorem cannot be improved upon, as will be seen in the sequel.
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N[S(x, p)]=N[T(x/p, P)].
Proor. This is obvious, from the unique factorization theorem.

LeMMA I11. The number of primes less than or equal to x is O(x/log x)
and F(x) =log log x+b+0(1/log x) where b is constant.

This is well known and is an “elementary theorem?” in the theory of
primes.

LemMmA IV. If 0<a =1, and Theorem A is true for c2ci, then it is
true for cZci/(1+cy).

Proor. By hypothesis ¢(c) is defined for c=¢;, and
¢(c) > 0 and is continuous for ¢ = ¢,
3)  f(x, ¢) = xp(c) + O(x/log x) uniformly forc; S ¢ = 1,
f(z, ¢) = xp(c) + O(1) for c = 1, by Lemma 1.

Also, obviously,
(4) ¢(c) is bounded and monotonic increasing, though possibly not
strictly so, for c=c.

Let now
5) ca=c/(14c1) and ¢z £ d = ¢ (obviously ¢z < c1).
Now
f(x, ¢1) — f(x, d) = ] g}s zclN[S(x, ) (by Lemma II)
- 3 N[T(ﬁ, p)] (by Lemma IT)
a9<pS 24 ?

_ x log p ﬁ)
z«ké ,v.f( P log x — log p

— =z _}ﬂ_)}
,"<,Z§ ,,e,{p ¢(log x — log p

X
+ Zow+ To(5s)

p<z
by (3) and (5), since in this range
log p d Ca

(6) > g = (1.
loge—logp 1—d 1~—c

Hence
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(6a) f(=, ¢1) — f(x, d) = xfx:ﬁ‘i’({gg‘;?%;)dm) +O(lo:x>

by Lemma III, where the “O” is uniform with respect to d in virtue
of (3) and (6), and the Riemann-Stieltjes integral on the right exists
in virtue of (4) and the continuity of ¢(c) for ¢=¢,. Using integration
by parts for the integral and using (3) and (4) and Lemma III, we
obtain (see Note 1a)

o — ) = zcl( log ¢ )‘”+O x>
f(z, a1 X, ‘xfzd ¢ log x — log ¢/ tlogt (Ing

(uniformly for ¢; = d = ¢1)

a u du x
M w2
a 1-— % log =

(uniformly for ¢ < d = ¢1).

Q)

This, together with (3), proves the existence of ¢(c) for c=c1/(1+cy),
though it is not yet clear whether ¢(c) >0 in ¢i/(1+c1) Sc=cy, and is
continuous therein.

Now, let

€1

8 Sdi<d S

1+01

Then (7) gives

R AnB [, Yoo oh)

dg u
— ¢(———)du as x— o,

dy
a2 % du
a 1—u/) u

Hence

© s(d) — () = [

by (3), since in the range dy <u <d;, we have u/(1 —u)>c.

This shows that ¢(ds) #0 for any d: of the kind specified in (8);
for, if ¢(d2) were zero, then obviously ¢(d1) would be zero and their
difference also would be so, contrary to (9). Also, obviously ¢(ds) =0.
Hence

(10) o(c) >0 forc > ¢i/(1 + ¢v).
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Also by (9) and the hypothesis
(11) ¢(c) is continuous for ¢ = ¢i/(1 + cJ).

Using now the results (7), (10), and (11) and repeating the above
argument with ¢1/(14¢;) in place of ¢;, and noting that the positive-
ness of ¢(c1) is not needed in the above argument, it follows that
#(ar/(1+¢1)) >0.

This completes the proof of the lemma.

PROOF OF THE THEOREM. Lemma I holds for ¢=1 and Lemma IV
for 0 <c<1, if we note that the hypotheses of the lemma are satisfied
for c;=1, and hence by the result of the lemma for ¢;=1/2 and
hence by induction for ¢;=1/# (n positive integral), and that 1/2—0
as n—> .,

COROLLARY. For 0<c; <=1,

¢(ce) — ¢(cr) = f: ¢<1 _’f u)d;:f

(see also Note 1b).

PROOF. A finite set of numbers, do, d1, ds, - - * , ds, Obviously exists
such that

a=d<d1<dy < -+ < dy=cCq;
and

dr
4> ——
1 + d(r+1)

To each of these intervals (d,, d,;1) apply the result (9) and add; the
corollary follows at once.
ReMARks. The “O” of the theorem cannot be improved upon.
This can be seen as follows:
Obviously f(x, 1) =x4+0(1) and

o s(ed) - 2 [+ 2, ()

where G(x) = X ancpss {x/p} and { y} denotes fractional part of ¥.
Hence f(x, 1/2)=x(1—log 2)+o(x/log x)+G(x) by the prime
number theory (see Note 1c). But G(x) >kx/log x where k is a fixed
positive number, as can be easily seen from the prime number theory.
NortE 1. (a) The deduction of (7) from (6a) is based on the follow-

ing:

(r=0,1,2,--,n—1).
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We observe that the Riemann-Stieltjes integral

C.

f - ( gt )dF(t) = [F(t) ( g ! )]
4 ¢ log x — log ¢ h ¢ log x — log t/d.a

~ [ row
zd
log ¢ L
= [(log log ¢+ b)¢ (———-———)]
log « — log ¢t/ 1.4
z0
— [, Goglogt+ s + R
24

which, by the substitution ¢ =x* performed after integration by parts
of the integral on the right, equals

c % du
f ¢( )—+R
d 1—u/ u

where, by Lemma III,

1 1 a1 1
o) -olei) - (i)
dlog x dlog 24 log ¢

where, on account of (4), the integral also is O(d~! log™ x).

(b) The integral equation for ¢(c) may be used for successive
computation of the function. Starting with ¢(¢) =1 for ¢=1, one
observes that ¢/(1—¢) 21 for 1/2<c¢<1 so that

tdu
¢(c)=1-—f-—=1+logo for1/2 s ¢ = 1.
¢ U

This result can be used to compute ¢(¢) on the interval (1/3, 1/2)
and so on; and an easy induction shows that

$(0) = 1+ 2 (= 1)¥(c), ¢ >0,
r=1
where ¥1(c) =S du/u for ¢=<1, and ¥1(c) =0 for ¢>1, and
1 u \du
¥(e) = f” ¢r-1(1 — u)—u—’ forc > 0.

One notes that y,(c)=0 for ¢=1/r (so that the infinite series is
actually a finite sum) and also that the functions ¥.(¢), =2, are
not elementary functions.
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(c) From the known result w(x)=x/log x+x/log? x+o(x/log? x)

follows
1 z 1 1/2 z FA
SR R P C L L
A<pSz P a2 x x1/2 Az B2

1 1
-7 log x +o(logx)
z t t 17 dt
+ f An [log t+ log? ¢ + 0( logzt)]?

1
=Iog2+o( )
log

NortE 2. From the corollary to the theorem follows, for 0 <c; <c,
Sa/(1—c)and 2 =1,

#(c)) — (1) = ¢(c2) log ca/c1 > ¢(ca)(1 — ¢1/ce)

from which follows ¢(cs)/c2>(c1)/c1, whence, arguing as in the proof
of the corollary, one sees that ¢(c)/c is a strictly monotonic increasing
function in 0<¢c =1,

¢(c) has other interesting properties, which will be published
shortly. One such is that for every fixed #, ¢(c)/c*—0 as c—+0. This
result, together with the now obvious result

i 7 9
1m

z— x

= ¢(¢c) >0, ¢ fixed and positive,

was communicated to Dr. Chowla in August of 1947. I understand
from his reply that Vijayaraghavan already was in possession of a
proof of his (Chowla’s) conjecture that

lim jnf 29

z—® x

> 0, for ¢ positive and fixed.

In conclusion, I wish to thank the referees for their suggestions
which have led to the clarification and additions of content contained
in Note 1.
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