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AND FREE OF PRIME DIVISORS GREATER THAN xe 

V. RAMASWAMI 

Dr. Chowla recently raised the following question regarding the 
number of positive integers less than x and free of prime divisors 
greater than xc

t which number is here denoted by f(x, c) : For every 
fixed positive c, is lim inf x+*>f(xi c)/x>0? 

This paper, while incidentally answering this question in the 
affirmative, proves more, in fact the best1 possible result in this di­
rection, namely: 

THEOREM A. A function <j>(c) defined for all c>0 exists such that 
(1) <t>(c) > 0 and is continuous f or c>0\ 
(2) for any fixed c 

ƒ(#, c) = x<f>(c) + 0(x/log x) 

where the uO" is uniform for c greater than or equal to any given positive 
number. 

Notation. The following symbols are used for the entities men­
tioned against them: 

p, pr\ any prime. 
S(x, p) : the set of integers less than x each divisible by p and free 

of prime divisors greater than p. 
T(x, p) : the set of integers less than x each free of prime divisors 

greater than p. 
N\K\: the number of members of K, where K denotes any finite 

set of integers. 
^ ( 0 : X)p^< iX/P) where p runs through primes. 

Preliminary lemmas. 

LEMMA I. For c^l, the theorem is truet and 

ƒ(*, c) = x<t>(c) + 0(1). 

PROOF. This is obvious. In fact, for these values of c, <f>(c) = 1, and 

| ƒ ( * , * ) - * * ( * ) | S 1. 

LEMMA I I . If pi^pi, the sets £(#, pi) and S(x, pi) are distinct, and 
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1 The a0" of the theorem cannot be improved upon, as will be seen in the sequel. 
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N[S(x,p)]-N[T(x/p,p)]. 

PROOF. This is obvious, from the unique factorization theorem. 

LEMMA I I I . The number of primes less than or equal to x is O(x/log x) 
and F(x) =log log x+b+0(l/log x) where b is constant. 

This is well known and is an "elementary theorem" in the theory of 
primes. 

LEMMA IV. If CXci^gl, and Theorem A is true for c^ci, then it is 
true for c^ci/(l+ci). 

PROOF. By hypothesis 0(c) is defined for cec i , and 

4>{c) > 0 and is continuous for c è £i, 

(3) f(x, c) = x<t>{c) + 0(x/log x) uniformly for Ci S c g 1, 

ƒ(#, c) = x<t>{c) + 0(1) for c è 1, by Lemma 1. 

Also, obviously, 
(4) 0(c) is bounded and monotonie increasing, though possibly not 

strictly so, for c^c i . 
Let now 

(5) C2~c/(l+ci) and c2 è d ^ d (obviously c2 < Ci). 

Now 

ƒ(*. *i) -f(*,d)= E # [S(*. p) ] (by Lemma II) 
xd<p& xei 

= E A r f r ^ — , p]\ (by Lemma II) 
xd<p£xei L \p / J 

xd<p*& \P log * — log pf 

xd<p£xei I # \l0g * — log pf) 

+ E o(i) + E of — } 
P^X1'2 P<X112 \plog(x/p)/ P^x1'2 p<xlf2 \pl0g(x/p). 

by (3) and (5), since in this range 

f*\ l°gP ^ d ^ C2 

(6) > ^ = a. 

log x — log p 1 — d 1 — c2 

Hence 
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(6a) ƒ(*, Cl) - ƒ(*, d) = x f X J- ~ Wo + of-?—) 
J xd \log X — log tf \ log X / 

by Lemma I I I , where the "O" is uniform with respect to d in virtue 
of (3) and (6), and the Riemann-Stieltjes integral on the right exists 
in virtue of (4) and the continuity of <j>(c) for c^Ci. Using integration 
by parts for the integral and using (3) and (4) and Lemma III , we 
obtain (see Note la) 

J
xH ( log/ \ dt / x \ 

n\—V";)77~7+0(i—) 
x* \log x — log t/ tlogt \ log x / 

(uniformly for c2 ^ d g c\) 

ƒ•c* / u \du / # \ 
<M )— +0( ) 

a \ 1 — w/ w \ log# / 

(uniformly for c2 è d ^ Ci). 

This, together with (3), proves the existence of 0(c) for c*zci/(l +£i), 
though it is not yet clear whether <j>(c) > 0 in Ci/(1+Ci) ^c^gci, and is 
continuous therein. 

Now, let 

(8) -— ^ dx< d2^ cx. 
1 + Ci 

Then (7) gives 

ƒ(*, d2) ~ f(x, dx) . f V_!!_\*!+0(_2_) 
J dl W — ufu \\ogx/ 

Jdw as # —> oo# 

J dl \ 1 — w/ 

Hence 

(9) *(<*,) - *(<*,) = I ^ ( T — ) — > 0, 

by (3), since in the range di<u<d2, we have u/(l— u)>C\. 
This shows that <j>(d2)?£0 for any ^2 of the kind specified in (8); 

for, if <j>{d2) were zero, then obviously <t>(di) would be zero and their 
difference also would be so, contrary to (9). Also, obviously $(^2) èO. 
Hence 

(10) 0(e) > 0 fore > ci/(l + d). 
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Also by (9) and the hypothesis 

(11) <j>{c) is continuous for c ^ Ci/(1 + C\). 

Using now the results (7), (10), and (11) and repeating the above 
argument with £i / ( l+£i) in place of Ci, and noting that the positive-
ness of 4>(ci) is not needed in the above argument, it follows that 
0 (c i / ( l+c i ) )>O. 

This completes the proof of the lemma. 
PROOF OF THE THEOREM. Lemma I holds for c^ 1 and Lemma IV 

for 0 <c < 1, if we note that the hypotheses of the lemma are satisfied 
for Ci = l , and hence by the result of the lemma for Ci — 1/2 and 
hence by induction for Ci = l/n (n positive integral), and that 1/n—»0 
as w—> oo. 

COROLLARY. For 0 < c i < c 2 ^ l , 

u \du ƒ' *2 / u \du 
4>[- ) — 

C1 \ 1 — uf u 

{see also Note lb ) . 

PROOF. A finite set of numbers, d0, di, d^ • • • , dn% obviously exists 
such that 

C\ = do < d\ < ^2 < • * • < dn = C2y 

and 

d(r4-l) 
dr è , , / (f = 0, 1, 2, . . . , n - 1). 

1 + d(r+l) 
To each of these intervals (dr, dr+i) apply the result (9) and add ; the 
corollary follows at once. 

REMARKS. The " 0 " of the theorem cannot be improved upon. 
This can be seen as follows: 

Obviously ƒ(x, I)=x+0{1) and 

ƒ(»,!)-ƒ(*,!)= £ [4] = * Z (T)-G<*) 
\ I / £l2<p£ x L P J X^<pû X \ P / 

where <?(#) = X)a*/a<p£* {x/p} and {;y} denotes fractional part of y. 
Hence ƒ(#, 1/2) =#(1— log 2)+o(x/\og x)+G{x) by the prime 

number theory (see Note lc) . But G(x)>kx/log x where k is a fixed 
positive number, as can be easily seen from the prime number theory. 

N O T E 1. (a) The deduction of (7) from (6a) is based on the follow­
ing: 



1126 V. RAMASWAMI [December 

We observe that the Riemann-Stieltjes integral 

J xd \log x — log tf L Mog x — log t/l 

af* 

- [(log log t + b)4> ( l0g\ )Tl 

L Mog x — log t/Jxd 

(log log * + &)<ty + £ 

which, by the substitution t~xu performed after integration by parts 
of the integral on the right, equals 

ƒ•C1 / u \du Hz )-+R 
d \ 1 *~ U/ U 

where, by Lemma I I I , 

R = o( }-()( \ - {* o(-^—)d<t> 
\d log xf \d log x/ J xd \ log t / 

where, on account of (4), the integral also is 0(d~l log -1 x). 
(b) The integral equation for <t>(c) may be used for successive 

computation of the function. Starting with <£(c) = l for c ^ l , one 
observes that c/(l—c)è 1 for 1 / 2 S c < 1 so that 

J *1 du 
— = 1 + log c for 1/2 ^ c ^ 1. 

c W 

This result can be used to compute 4>(c) on the interval (1/3, 1/2) 
and so on; and an easy induction shows that 

r=l 

where $i(c)~fl
c du/u for £ ^ 1 , and ^ i (c )=0 for c > l , and 

/

, x / u \du 
* r - i ( - 1 —* f o r c > 0 . 

fi \1 — ^ / w 

One notes that \l/r(c)—Q for c^l/r (so that the infinite series is 
actually a finite sum) and also that the functions i/r(c), r ^ 2 , are 
not elementary functions. 
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(c) From the known result w(x)*=x/log x+x/log2 x+o(x/log2 x) 
follows 

dt 
&*<p£z P J *i'2 t X X112 J «1/2 t2 

___»_ + .(JL) 
log * \ log x / 

J #* Llog / log21 \ log21 ) \ t2 

« l o g 2 + o(- \ 
\ log x / 

NOTE 2. From the corollary to the theorem follows, for 0<C\<C2 
^ Ci/(1 — ci) and C2 ̂  1, 

<t>(c2) — 0(^i) <£ 0(^2) log c2/ci > <j>(c2)(l - ci/ct) 

from which follows <l>(c2)/c2><l>(ci)/ci, whence, arguing as in the proof 
of the corollary, one sees that <t>(c)/c is a strictly monotonie increasing 
function in 0 <c -f» 1. 

<f>{c) has other interesting properties, which will be published 
shortly. One such is that for every fixed n, </>(c)/cn-*0 as c—»+0. This 
result, together with the now obvious result 

liux — <£(<;) > 0, c fixed and positive, 
z-4» X 

was communicated to Dr. Chowla in August of 1947. I understand 
from his reply that Vijayaraghavan already was in possession of a 
proof of his (Chowla's) conjecture that 

ƒ(*. c) 
lim inf > 0, for c positive and fixed. 

In conclusion, I wish to thank the referees for their suggestions 
which have led to the clarification and additions of content contained 
in Note 1. 
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