
L-S-HOMOTOPY CLASSES ON THE TOPOLOGICAL 
IMAGE OF A PROJECTIVE PLANE 

MARSTON MORSE 

1. Introduction. Models for the L-S-(locally simple) homotopy 
classes of closed ^-curves (p = parameterized) on any 2-manifold S 
have been announced in Morse [ l ] . 1 Proofs have been given only for 
the case in which S is orientable. The present paper will treat the 
case in which 5 is the top. (topological) image of a projective plane. 
The proofs in the case of a general non-orientable surface can be 
given by an appropriate modification of methods of Morse [ l ] and 
of the present paper. 

Recall that one writes ƒ « 0 when ƒ is a closed p-curve homotop. to 
zero. Deferring technical definitions until later sections, we can state 
the principal theorem as follows. 

THEOREM 1.1. Let h be a simple dosed p-curve on the top. image S of a 
projective plane with h not ^OonS. Let ¥n) (n >0) be a closed p-curve on 
S which traces h n times. Any L-S-closed p-curve f on S is in the L-S-
homotopy class of A(1) or A(3) if h not « 0, and of h{2) or A(4) if h « 0 . No 
two of the p-curves h(1), h(2\ h(z\ A(4) are in the same L-S-homotopy class. 

For theorems on regular closed curves in the plane see Whitney, and 
H. Hopf. For L-S-closed curves in the plane see Morse [2] and Morse 
and Heins [ l ] . For a use of L-S-curves in studying deformation 
classes of meromorphic functions see Morse and Heins [2]. 

2. L-S-curves and deformations. Let C represent the unit circle 
on which \z\ = 1 in the plane of the complex variable z — u+iv. With 
z = eid on C, we assign C the sense of increasing 0. Let S be an arbitrary 
2-manifold. A closed p-curve on S is a continuous mapping ƒ of C into 
S such that the image of z in C is a point ƒ (z) in 5. Two ^-curves / i 
and f 2 are regarded as the same if and only if 

/i(s) = ƒ*(*) 

for every z in C. The union of the points ƒ(z) in S as z ranges over C 
is called the carrier of/. The simplest case arises when the points ƒ (z) 
are in 1-1 correspondence with their antecedents z in C, and in this 
case ƒ is termed simple. 

Let ƒ be a continuous mapping of C into S. Let X be any sense 
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preserving top. (that is, 1-1 and continuous) mapping of C onto C 
with \(z) the image in S of z in C. Then ƒ and ƒX are termed equivalent 
mappings of C into S or equivalent ^-curves on 5. Here/X symbolizes 
the function whose value at z is ƒ [X(s)]. In earlier papers the class of 
mappings equivalent to a given mapping has been termed a curve, as 
distinguished from a p-curve. We shall here find it simpler to rely 
on />-curves and make use of Lemma 2.1, according to which any 
two equivalent closed ^-curves are in the same L-S-homotopy class. 

A closed p-curve f on S will be termed L-S if there is a positive 
constant e so small that the mapping under ƒ of any arc of C with 
length less than e is top. Hence there exists a constant e±>0 so small 
tha t any subarc of ƒ whose carrier has a diameter less than e\ is 
simple. Such a constant e\ is called a norm of local simplicity of ƒ. 

The L-S-homotopy class [ƒ]. Let J be the interval 0 ^ / ^ l , / the 
"time." A deformation of ƒ on 5 is a continuous mapping D of CXJ 
into 5 such that the image of a point (z, t) in CXJ is a point D(z, t) 
in 5, with 

D(*> o) = ƒ(*) (* e o 
initially (that is, when 2 = 0). For / fixed in J , D defines a mapping2 

D{ -, /) of C into 5, and thus a p-curve f * termed the deform of ƒ at the 
time t. We say that ƒ is deformed through the family ƒ ' into ƒ *. If the 
deforms/ ' , 0 ^ / r g l , possess a common norm of local simplicity, D 
will be said to be L-S. The class of ^-curves f1 into which ƒ can be 
L-S-deformed on S is termed the L-S-homotopy class [ƒ ] of ƒ on 5. 
By virtue of a proof similar to that of Lemma 28.1 of Morse [2] we 
can affirm the following. 

LEMMA 2.1. Any two equivalent closed p-curves on S are in the same 
L-S-homotopy class on 5. 

A first objective of this paper is the proof of Theorem 1.1. Models 
for the L-S-homotopy class [ƒ] on the top. image S of a projective 
plane will be determined as indicated. In case the given £-curve ƒ « 0 , 
the Jkf-order of/, as defined in Morse [l, §4], is 1, or 2 mod 2, accord­
ing as [ƒ] = [hi2)] or [ƒ] = [&(4)]. Here M is the top. sphere covering 5. 

In case the given p-curve ƒ no t^O, a new S-difference order ds(f) 
is defined in §7 and [ƒ] =[&(1)] or [hiz)] according as 

ds(f) = 1 or 3 (mod 4). 

The value of ds(f) will be shown to be independent of ƒ in its L-S-

2 For fixed t,D(- tt) symbolizes the function whose value at z in C is D(z, t). 
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homotopy class, and to be a top. invariant in the following sense. If 
Sf is a top. image of S with ƒ ' on S' the top. image of ƒ on S, then 

da(j) = da.(j') (mod 4). 

An important special result in the case ƒ not « 0 is that ds(f) = 1 mod 4 
if and only if [ƒ] contains a simple closed p-curve. 

3. The 2-sphere M covering II. We shall begin with a special model 
II of a projective plane obtained by identifying diametrically opposite 
points 

x = (xh #2, XB), — x = (— xi, — *2, ~ ^3) 

of a 2-sphere 
2 2 2 

(3.1) M: x\ + X2 + xz = 1. 
A point in II can accordingly be given by a pair (x, —x) of dia­
metrically opposite points x and — x in M. We understand that the 
point (x, —x) in II equals the point (—ff, #) of II. We say that x in 
M covers the point (#, —x) =(— #, #) in II, and denote this point in 
II by A (x). We say also that x on M projects into -4 (x) on II. 

jTAe mapping A of M onto II Âas taw fundamental properties: (1) 
/or x and y in M 

(3.2) A{x)-A{y) 

if and only ifx~±y;(2) the mapping A is locally top. 
Let 0 be any mapping of an abstract set E into M. Then8 A<f> is a 

mapping of E into II termed the A-projection of <f> into II. 
A closed £-curve F mapping C into M will be termed J?-invariant 

(reflection invariant) if for every z in C 

(3.3) F(-z) = -F(z). 

The mapping \x of C onto the semi-circle &. We shall make frequent 
use of a mapping 11 of C onto the semi-circle 

(3.4) d: z = e?\ 0 g 0 < TT, 

of C. Explicitly, with z=*eid, set 

(3.5) /*(*) = e*6'® ( O g K 2T) . 

The mapping fx of C into G is continuous, except at 2 = 1. Let G be 
the residual semi-circle C—G of C When F is -iR-invariant the 

3 Here and elsewhere a functional operation such as A on <f> is indicated by A<f>. 
The value of 4̂<£ at a point # of E will be denoted by A<f>(x) and not by 4̂ [<f>(x) ]. 
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mapping Ffi of C into M determines the mapping F of C into M in 
accordance with the equations 

( 3 6) M**) = F(«) [« G Cx], 

*>(**) = - *oo [z e c , ] . 
By definition /x is single-valued; it is one branch of z1/2 on C, and to 
avoid confusion is not to be continued into the other branch. The 
mapping Ffi of C into M is discontinuous a t the point z = 1 of C. In 
fact, 

(3.7) F M ( 1 ) - - W - ) 

where /fy(l~) indicates the limit of Ffx(z) as 2 tends to z = 1 on C from 
the arc of C on which 7r <arc z <2TT. 

When F is an j?-invariant closed £-curve on M, the mapping 

(3.8) fF = AF» 

of C into II is a c/osed £-curve on II by virtue of (3.7). The p-curvefF is 
the A -projection of Ffx on II. 

A deformation A of a closed ^-curve F on M is a continuous mapping 
of CXJ into M in which the image of a point (z, t) of C X / is a 
point A(JS, /) in M, with 

(3.9) A(z,0)=F(z) [zGC] 

initially, that is, for / = 0. Such a deformation is termed R-invariant if 

A ( - *f 0 = - A(s, 0 

for each point (z, t) in CXJ. Suppose then that A is jR-invariant. 
Then F is necessarily ^-invariant. The deform Fl of F under A is the 
-R-invariant mapping A(-, t) of C into M. The ^4-projection AFJJL of 
FJJL is a closed £-curve fF on II, and AAJJ, is a deformation of fF on 
II. We draw the following conclusion : 

LEMMA 3.1. If an R-invariant L-S-closed p-curve F on M admits an 
R-invariant L-S-deformation on M through p-curves F\ then the A 
projection on II of Ffi admits a L-S-deformation on II through the closed 
p-curves AFlix on II. 

4. The cases / « O a n d / not « 0 . Let ƒ be a closed £-curve on II. 
Let Xo and —#o be the points in M which cover ƒ (1). Let a be either one 
of the points XQ, —X$. Given ƒ and a it follows from the local top. 
character of the projection A of M onto II that there exists a unique 
continuous mapping of cj/a of the 0-axis into M such that (with 
z~eiB) 
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(4.1) <t?a(0) = a A4>i(0) = ƒ(*) ( - 00 < 0 < + oo). 

I t follows from (4.1) that 

(4.2) A4L(0+2T) ~A<jfa{e). 

Recall that for points x and y in M, A (x) =A(y) if and only if x = ±y. 
From (4.2) then 

(4.3) * ! ( 0 + 2 i r ) « ±<t>i(B). 

The sign in (4.3) is independent of 6 and is + if and only i f / « O in 
accordance with the following lemma. 

LEMMA 4.1. Iff is a closed p-curve on II and a a point in M such that 
A (a) = / ( l ) , and if <fif

a is the unique continuous mapping of the d-axis 
into M such that (4.1) holds given a, then a necessary and sufficient 
condition that 

(4.4) <t>i(d + lie) = 4>i(0) ( - 00 < 6 < + 00) 

is that f ^0 on II. 

If (4.4) holds the equation 

(4.5) Ff
a(z) » <t>{{B) (* = «") 

defines a single-valued mapping Ff
a of C into Af. Thus Ff

a is a closed 
£-curve on M, and as such is deformable on M through a continuous 
family F$, O ^ ^ l , of closed ^-curves on M into a £-curve, whose 
carrier is a point of M. The -4-projections ^4^f into II of these p-
curves deform ƒ on II into a £-curve on II whose carrier is a point. 
Hence ƒ « 0 on II if (4.4) holds. 

Conversely suppose that ƒ « 0 on II, or more specifically that ƒ on II 
is deformed into a ^-curve whose carrier is a point, through a family 
fl (O^tf^ l ) of closed ^-curves on II. With <j/a given in terms of ƒ by 
(4.1) a continuous mapping 0^ of the 0-axis into Mean be determined 
by continuation with respect to increasing t, with 

</«fy) = /a(0) 

initially, and 

(4.6) A&(0) s f\z) [for z = ei9] 

where 0^(0) is continuous in (0, t) for O ^ ^ l and arbitrary 6. 
As a consequence of (4.6) 
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(4.7) * a ( 2 T ) « ±* 'a(0) ( O g ^ l ) 

where the sign in (4.7) is independent of t on [0, l ] . For / sufficiently 
near 1 on [O, l] the + sign must hold in (4.7) since the carrier of/1 

in (4.6) is a point and A is locally top. Hence the + sign must hold 
in (4.7) when J = 0 as well. Thus (4.4) holds when ƒ « 0 on II. 

Antecedents and ^-antecedents on M of p-curves on II. If ƒ is a closed 
£-curve on II, any closed £-curve F on M such that AF=f will be 
called an antecedent on M to ƒ on II . If ƒ not « 0 no closed ^-curve F 
on M can be antecedent t o / , because (4.4) cannot hold in this case. 
However we shall verify the following. When ƒ not « 0 there always 
exists (Lemma 4.2) an i?-invariant closed £-curve F on M such that 
AFjjL=f. Such a closed p-curve F will be called a \x-antecedent of/. 

LEMMA 4.2. Let ƒ be a closed p-curve on II. If / « 0 on II there exist 
just two closed p-curves Ff antecedent on M to f on II. If ƒ not^O there 
exist just two closed p-curves Ff

y ^-antecedent on M to f on II. 
The two antecedents (ji-antecedents) F and F* of f satisfy the relation 

F{z) = -F*{z). 

Case I. / « 0 . We start with <pf
a as defined in (4.1), with a=Xo or 

— Xo where A(xo) = / ( l ) . Let Ff
a then be defined as in (4.5). In case I, 

(4.4) holds, so that Ff
a is closed on M. The A -projection of F{ is ƒ in 

accordance with (4.1). There are accordingly at least two closed 
^-curves Ff

a (a=Xo or —x0) antecedent to ƒ on II. 
Any other closed £-curve F on M such that AF=f must satisfy 

the condition 

F(l) = a (a = xo or - Xo). 

By virtue of the continuity of the mapping Ff and the top. character 
of A, F is thereby uniquely determined by ƒ and a, and so must equal 
Ff

a. There are accordingly just two closed ^-curves F antecedent on 
M to ƒ on II when ƒ « 0 . 

Case I I . ƒ n o t « 0 . We start again with <j)f
a as defined in (4.1). In 

Case II we define Ff
a as a p-cuvve on M such that for w = eia 

(4.8) Ff
a(w) = <l>a(2a) [ - oo < o < oo ]. 

That Fr
a is single-valued for each w in C, and ./^-invariant, follows 

from the relation 

(4.9) / a ( a + 2 7 r ) = - *C(a) 

which holds by virtue of Lemma 4.1 and (4.3). In fact 

file:///x-antecedent
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F{(- w) = /a(2[a + „ • ] ) » - /a(2a) = - F{(W) 

for every w in C Relation (4.8) implies that 

(4.10) Ffatx(z) = 4>'a(0) [z = ««, 0 ^ 0 < 2TT] 

and it follows from (4.1) that A Ff
aix =ƒ. While 7%u is discontinuous at 

z = 1 on account of (4.9), -4 i ^ is continuous at z = 1. In Case II there 
accordingly exists two closed ^-curves Ff

a (a = ±Xo), jut-antecedent on 
I f to ƒ on II. 

Any other closed p-curve F on M such that A Fix =ƒ must satisfy 
the condition F(l) = a , [a = ±Xo] and by a process of continuation be 
uniquely determined by the relation A Fp =ƒ as the i?-in variant closed 
£-curve Ff

a. The ^-curves Ff
a[a = ±Xo] are accordingly the only closed 

^-curves ju-antecedent on M to ƒ on II when ƒ not « 0 . 
The preceding lemma can be extended to deformations D on M as 

follows. 

LEMMA 4.3. Corresponding to any continuous deformation D on II of 
a closed p-curve f such that f « 0 [f not « 0 ] on II, and to either of the 
two antecedents [jx-antecedents] Ff of ƒ, there exists a unique deforma­
tion A of Ff on M such that AA — D when / « 0 , while A is R-invariant 
and AAJJL — D when f not « 0 . 

We term the deformation A of the lemma antecedent on M to D on 
II when AA=D, and /z-antecedent when AAfx~D. 

The proof of Lemma 4.3 is so similar to that of Lemma 4.2 that it 
need only be indicated. 

Let ƒ', O ^ / ^ l , be the deform of ƒ under D a t the time t. Let 
Xo(t) and — Xo(t) be the two points in M which cover f'(l) on II, 
Xo being chosen so that it is continuous for tin [0,1 ]. Let ® represent 
the 0-axis. Let a be either of the functions ±Xo. There exists a 
unique continuous mapping <3>a of © X / into M such that (with 
z = eie) 

(4.11) * a(0, /) = «(*), A$a(6, t) = D(z, t) 

for each point (0, i) on © X / . Equation (4.11) replaces (4.1) while the 
analogue of (4.3) is 

(4.12) $ a ( 0 + 2 i r f O = ± *«(M) 

where the sign is + if and only if ƒ « 0 on II. 
Case I . / « O . In this case the required deformation A is defined by 

the equation 
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Then ^4A0 = D in accordance with (4.11). 
Case I I . ƒ not « 0 . One here sets 

(4.13) A„(w, t) = 3>a(2a, t) [w = e^\ 

and observes that A„ is single-valued and i?-invariant by virtue of 
(4.12), the sign — prevailing in (4.12). Finally (4.13) implies that 

A«Lu(*), t] = *a(6, t) (z = e«, 0 g 0 < 2TT) 

for each 2 on [0, l ] , so that AAati — D. 
In either case the uniqueness of a deformation A satisfying the 

lemma when an antecedent (/x-antecedent) F% o f / i s given, follows as 
in the proof of Lemma 4.3. 

If F is an ./^-invariant closed £-curve on M the class of all ^-in­
variant closed ^-curves which admit i?-invariant L-S-deformations 
into F on M will be called an .^-invariant L-S-homotopy class on M. 

The following theorem reduces the problem of determining the 
L-S-homotopy classes on II to a problem on M. I t is a consequence of 
the preceding lemmas including Lemma 3.1. 

THEOREM 4.1.-4 necessary and sufficient condition that L-S-closed 
p-curvesfi and f2 ~ 0 [not « 0 ] on II be in the same L-S-homotopy class on 
His that an antecedent {^-antecedent] Ffi and Ff2 of j \ and ƒ2 respectively 
be in the same L-S-homotopy class [R-invariant L-S-homotopy class] 
on M. 

In case ƒ « 0 on II models for the L-S-homotopy classes of ƒ can 
accordingly be inferred from those on the 2-sphere M. Such models on 
M are given in Theorem 4.2 of Morse [1]. 

The model p-curve k on II, and T on M. We shall introduce a simple 
closed p-curve k on II, with carrier on II covered by a great semi­
circle on M. More definitely we suppose that k has a ju-antecedent T 
on M given by the mapping 

(4.14) xi + ix2 = z, #3 = 0 [ 2 6 C], 

of the circle C into M. For each integer n>0 let closed ^-curves &(n) 

on II and T(n) on M be defined by the equations 

*(»>(*) = *(*»), r<»>(s) = T(zn) [z E C]. 

The ^-curves &(1) and &(3) have T and T(3) as ju-antecedents on M, 
while k(2) and &(4) have T and T(2) as antecedents on M. Theorem 4.2 
of Morse [ l ] gives the following. 
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THEOREM 4.2. Any L-S-closed p-curve / « 0 on II is in the L-S-
homotopy class of &(2) or &<4> on II, while [&(2)] ^ [&(4)] ÖW II. 

That | > ( 2 ) ] ^ |>(4)] on n follows from the fact that [T]T* [r<2)] on 
M. For the equality [>(2)] = [>(4)] on II would imply that [ r ] = [r(2>] 
on M by virtue of Theorem 4.1. 

Given ƒ « 0 on II the problem of determining to which of the two 
homotopy classes, [&(2)] or [&(4)], ƒ belongs is equivalent to the prob­
lem of determining to which of the two homotopy classes, [ r ] or 
[r ( 2 )] on My an antecedent F of ƒ belongs on M. This problem is 
resolved by the determination of the M"-order p(F), of F, as shown in 
§4 of Morse [ l ] . In fact 

[F] = [r] or [r<2>] 

according as p(F) = 1 or 2 mod 2. As shown in Morse [ l ] , p(F) is a 
topological invariant of M and F, and in particular is invariant under 
any "i£-invariant" homeomorphism T of M, that is, one for which 

r ( - x) = - T(X) (x e M), 

and is accordingly a top. invariant of II. Finally if F and F' are 
L-S-closed ^-curves on M 

p(F) - ^ ( F ) 

if and only if [i?] = [F'] on ikf, and accordingly if and only if [AF] 
~[AF'} on II. 

We turn accordingly to the case ƒ n o t « 0 on II. 

5. L-S-homotopy classes when ƒ not « 0 on II. Let F be an ^-in­
variant L-S-closed £-curve on M. In accordance with Theorem 4.1 
we seek a model for the i?-invariant L-S-homotopy classes of F on 
M. To that end we refer to the semi-circle G defined by z = eei for 
O^§0 <7r, and to the residual semi-circle G defined by z = edi when 
ir ̂ d < 2ir. Let F\ and F2 be submappings of F defined by the equations 
(a superimposed bar indicates closure) 

Fx(z) = F(z) [z G Ci], 

F2(z) =F(z) [zeC,] 

and term F\ the kernel of F\ and F% the kernel residue. We shall be 
concerned with various continuous mappings of G into M and will 
term such mappings p-axes on M. 

Various elementary £-arcs and ^-curves on M will be defined and 
analyzed for later use. In defining kernels F% the path which F(z) 
traces as z traces G will be given. These paths will be ordered finite 
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sequences of simple, sensed arcs successively joined to form a con­
tinuous curve. The paths used will be rectifiable. From a path a a 
kernel Fi= {a} will be formed by making z in G correspond to that 
point Fi(z) in a which divides a in the same ratio with respect to arc 
length as that in which z divides Ci with respect to arc length. The 
kernel residue F2 will be defined by setting 

P 2 ( - z) = - F1(z) [z G Ci]. 

In order that F so defined be L-S it is sufficient that Fi be L-S and 
that the images on M under F of sufficiently small neighborhoods of 
2 = 1 in C be simple. 

A symbolism is needed for a path a which is a product 

a = d\d2 * * • Q>n 

of simple, regular, sensed, closed curves #i, • • • , a„, with ak positively 
tangent to a&+i (& = 1, • • • , n — 1) at a prescribed point P*. If a is a 
simple, sensed arc or closed curve, and P and Q are two points in a, 
a(P, Q) shall denote the subarc (if any exists) of a leading from P to 
Q on a. With this understood a shall denote the path defined by the 
sequence of simple arcs (with ai(Pi, Pi) the arc a,\ cut at Pi) , 

<*i(Pi, Pi)tf2(Pi, P*) • • • an^(Pn.2l Pn_x), 

an(Pn_i, Pn_i).an_i(Pw_i, Pw_2) • • • a2(P2, Pi) . 

We admit the possibility that d\ is not a closed curve, but rather the 
closure of a simple arc, while a2 • • • an remain simple closed curves. 
In such a case P i is to be an inner point of a,\. If P and P ' are the 
initial and final points of ai, the preceding sequence (5.1) is to be 
altered by replacing #i(Pi, Pi) by #i(P, Pi) and ai(Pi, P') is to be 
added to the sequence. 

The elementary £-arcs on M to be used in defining model kernels 
Pi on M can now be defined. Let y be the simple arc 

(5.2) ^i = cos 0, x2 = sin 0, #3 = 0 (0 ^ 6 < T) 

taken in the sense of increasing 6. Let X be a small sensed circle of 
diameter < 1 , with x 3 ^ 0 thereon, positively tangent to y at the mid 
point (0, 1, 0) of y. Let X - 1 be the reflection of X in the plane [#3 = 0] . 
For n a positive integer Xw shall formally symbolize X • • • X with n 
factors X, while X~"w shall formally symbolize X"1 • • • X - 1 with n 
factors X-1. Let q be any nonvanishing integer. We introduce a 
product path y\q in which (0, 1, 0) is the point of contact of suc­
cessive factors. Then {y\q} is a well-defined £-arc on M which, taken 
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as a kernel Fu leads to a L-S-closed £-curve F on M. We shall prove 
the following lemma. 

LEMMA 5.1. The p-arc \y\q\ admits a L-S-deformation on M in 
which sufficiently short initial and final subarcs of y remain simple 
zvith invariant carriers, and in which {y\q\ is deformed into {7} when 
q is even y and into {yk} when q is odd. 

For simplicity we begin with 7X2. The circle X can be deformed on 
M through circles tangent to 7 at (0, 1, 0) into X""1, so that {7X2} is 
L-S-deformable on M into {7XX"""1}. The point of contact of \~l with 
X can be continuously regressed on X to the point of maximum #3 on 
X, varying X"1 through circles Xr \ 0 St S1, of fixed radius. Then Xf1 is 
the terminal circle in this deformation of X""1. Observe that XXj"1 is a 
figure eight with # 3 > 0 thereon, except at the point of contact of X 
with 7 at (0, 1, 0). I t is clear that ^XXi"1} is L-S-deformable into 
{7}, and that the whole deformation of {7X2} into {7} can be so 
made that sufficiently short initial and final arcs of 7 remain simple 
with invariant carriers. 

In the same way, it is clear that for q>2 [ykq] is L-S-deformable 
successively into 

{y\a-\\T} {TX8-2}, 
so that an induction with respect to q shows that the lemma is true 
if q>2. A reflection in the plane at x3 = 0 makes it appear that for 
<Z<0, {ykq} is L-S-deformable in the required manner into {7} when 
q is even, and into {7X"-1}, when q is odd. But the above deformation 
of X in toX - 1 shows that J7X""1} is L-S-deformable into {7X},and the 
proof of the lemma is complete. 

The succeeding proofs will be simplified if one can suppose that 
the mappings F of C into M are regular, that is, that the representa­
tion of the point F(z) in terms of the parameter 0 defining z = eH has 
a form 

(5.3) F(z) = [ tf iW.fl .W.a.W] 

in which at- (i = 1, 2, 3) has a continuous derivature ai and 

(5.4) à\{6) + a2(d) + à\{0) ^ 0. 

This and more is needed, and is supplied by the following lemma. 

LEMMA 5.2. Let e be a positive constant. Any R-invariant L-S-closed 
p-curve F on M admits an R-invariant L-S-deformation on M into a 
p-curve F' on M with no point F(z) thereby displaced a distance more 
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than e, and with F' regular. 

The method of proof of this lemma is entirely similar to the 
methods used in proving Theorems 28.2 and 28.3 of Morse [2], ex­
cept for the conditions of ./^-invariance of the ^-curves used. Dis­
regarding this condition for the moment recall that the component 
deformations used in Morse [2] are local in character, involving 
among other procedures the use of conformai transformations. All 
this is essentially the same on the sphere M. Short straight arcs used 
in the plane are here replaced by short geodesies on M. If the succes­
sive local deformations D are applied to sufficiently restricted arcs 
h on M, it will be possible to accompany each D by a simultaneous 
deformation of the reflection h( of h in the origin through a reflection 
of the deforms hl of h under D. In this way the resultant deforma­
tions will be made jR-invariant as required. 

The order Q(Fi, E). We shall refer to the given system of co­
ordinates (#i, X2, Xz) on M as the system E. The points 

Zi = (0, 0, 1), Z_x = (0, 0, - 1) 

will be called the poles of E. A ^-curve or arc on M whose carrier does 
not intersect the poles of E will be termed E-polefree. A p-curve on II 
will be termed E-pole free if no point of its carrier is covered by a 
pole of E on M. Let F be an jR-invariant closed p-curve of M which is 
E-pole free. With F(z) of the form 

F(z) = [xi(z)t *,(s), *,(*)] (z G C) 

we set 

t are X\(z) + ix2(z) 1 
11 L i 

7T J 

as z traverses Ci from z = ltoz=—l. Observe that #i(s) and x2(z) do 
not vanish simultaneously since F is .E-pole free. Thus Q(Fi, E) is 
well defined. Moreover Q(Fu E) is an odd integer since 

*i(— 1) = - *i(l), x2(- 1) *= - *2(1). 

We define Q(F, E) similarly with G replaced by C in (5.5), and ob-
observe that Q(F, E)=2Q(FU £ ) . 

The following lemma is of the nature of a procedural simplification. 

LEMMA 5.3. Let F be an R-invariant closed p-curve on M. The order 
Q(Fi, E) is an invariant of any R-invariant deformation of F on M in 
which the deforms F* of F remain E-pole free. The R-invariant L-S~ 
homotopy class of F contains p-curves F* such that 
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(5.6) Q(F*,E) = 2. 

The first affirmation of the lemma is immediately clear. In estab­
lishing the concluding statement of the lemma no generality will be 
lost if F is assumed regular. 

We shall deform an arc of F\ over one of the poles of £ . More defi­
nitely we start with an open simple arc g of -Pi and deform the middle 
third gi of g, leaving the carrier of the residue of g invariant in order 
that the deforms g' of g may cause no failure of F\ to remain L-S, 
apart from a failure of g* itself to remain L-S. We deform gi through 
tongue shaped curves g[ with two end points fixed on g, and with 
semi-circular tips r ' . We suppose r% moves across (0, 0, —1) so that 
at the moment of crossing (0, 0, —1) is at the mid point of r ' . By 
virtue of such a crossing Q(F[, E) will change by 2 or — 2 according 
as the sense of r ' just after the moment to of crossing is or is not the 
sense in which arc {x\-{-ix%) increases on r ' . By an appropriate de­
formation in which the tongue remains L-S, either case can be made 
to happen. I t should be observed that the tongue can be made self-
intersecting provided it remains L-S. Since any finite number of such 
tongues can be used, it is clear that (5.6) can be made to hold pro­
vided the deformation of F\ through the above £-arcs F{ be converted 
into an jR-invariant L-S deformation of F by deforming the kernel 
residue F2 of F through p-arcs F\ for which 

(5.7) FI(-Z) = -Fib) [zGCi]. 

Canonical p-curves on M. These curves are special ^-curves intro­
duced to simplify the proof of Theorem 5.1. Such ^-curves are to be 
regular J?-invariant closed ^-curves with the following properties: 

(I) F(±l) = (±1,0,0). 
(II) The positive tangent to the path of F at the points corresponding 

to z= ± 1 on C shall have the direction cosines (0, ± 1 , 0 ) respectively. 
(III) The p-curve F shall be E-polefree. 
(IV) The order Q(F,E)=2. 
I t follows from Lemmas 5.2 and 5.3 that there exists a canonical 

p-curve F in the i?-invariant L-S-homotopy class of any given ^-in­
variant L-S-^-curve. Cf. proof of Lemma 7.1. We term a kernel Fi 
of a canonical p-curve F, a canonical kernel F\. Canonical kernels lie 
on the open sub-manifold of M 

Mt**M-Zi- Z_x [Z±1 - (0, 0, ± 1)]. 

We shall make several uses of the following mapping. 
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A mapping W of Mi into a complex w-plane. Under this mapping x 
in Mi has an image w = W(x) in the w-plane where 

(5.8) W(x) = exp [xz + 2i arc (xx + ix2)] (x G Mi). 

This mapping can be equivalently given in the form 

(5.9) | w\ = exp [#3], arc w = 2 arc (xi + ix2). 

The mapping W is single-valued and continuous, and carries Mi into 
a ring in the w-plane on which 

(5.10) e-1 <\u\ <e. 

Each point w in this ring has just two distinct points on Mi of the 
form 

0*1, 02, 0s) ( ~ 01, ~ 02, 0s) [(01, 02) 5* (0, 0)] } 

as antecedents. The mapping W is locally top. The inverse W~l is 
single-valued on a two-sheeted Riemann surface covering the ring 
(5.10) twice without branch points. 

Canonical p-curves in the w-plane. If Fi is a canonical kernel on M, 
there exists a unique regular, closed p-curve fi mapping the circle C 
into the ring (5.10) on the w-plane, and such that 

(5.11) 0(a) = WFitx(z) beC], 

Such a £-curve has the following properties, paralleling the properties 
I - IV of canonical ^-curves on M. 

(I ') Q(l) = l . 
(II ' ) The positive tangent to the path of fi at the point corresponding 

to 2 = 1 is parallel to the positive v-axis {u-\-iv = w). 
( I l l ' ) The carrier of fi is on the ring (5.10). 
(IV7) The ordinary plane order of fi with respect to w = 0 is 1. 

Conversely any closed regular ^-curve fi in the w-plane which is 
canonical in the above sense determines a unique canonical kernel Fi 
on M such that (5.11) holds. We then term F the /x-antecedent on M 
of Q in the w-plane. Any L-S-deformation of a canonical kernel on 
Mi or p-curve on the ring (5.10) through such curves will be called 
canonical. 

Let fi then be a canonical £-curve fi on the ring (5.10) and F its 
canonical /^-antecedent on M. Any canonical L-S-deformation 
fi*, O ^ ^ l , of fi on the ring (5.10) implies a canonical L-S-deforma­
tion F[, 0 S t£ 1, of .Fi on M such that 

a = WF\P. 
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Such deformations of ti on the ring (5.10) are O-deformations in the 
sense of Theorem 33.1 of Morse [2]. Since the ordinary plane order 
q of 12 is 1 the proof4 of Lemma 33.1 and Theorem 33.1 shows that 
12 admits a canonical L-S-deformation on the ring (5.10) into a 
p-curve Q1 whose /x-antecedent on M has the kernel {7} or {YX*""1} 
according as the angular order (cf. Morse [2]) p of 12 is 1 or not 1. 
Lemma 5.1 thus permits the following conclusion. 

LEMMA 5.4. A canonical kernel Fi on M admits a canonical L-S-de­
formation on M into {7} or {7X}. 

Observe that {7} is the kernel Ti of the jR-invariant p-curve T on 
M denned at the end of §4. Recall tha t ATii~k{l). Observe further 
that the circle X can be deformed through circles which remain 
tangent to 7 at (0, 1, 0) into a great circle C' on which #3 = 0, so that 
'7X} is L-S-deformable among canonical kernels into { 7 C } . This is 

the kernel of T<3>. Recall that AT™n = k™. We are thus led to the 
basic theorem. 

THEOREM 5.1. Any L-S-closed p-curve f not^O on II is in the L-S-
homotopy class of &(1) or fe(3). 

We have merely to review the various steps which lead to this 
result. In the first place the given ƒ has an jR-invariant closed £-curve 
F as a jut-antecedent on M. Cf. Lemma 4.2. Such an F admits an 
./^-invariant L-S-deformation into a canonical p-curve F*. Cf. Lemmas 
5.2 and 5.3, and the proof of Lemma 7.1. 

The kernel F* admits a L-S-deformation through canonical kernels 
F*1 into {7} or {7X} in accordance with Lemma 5.4, and hence into 
the canonical kernel of T or T(3). On extending these canonical kernels 
on M by reflection as in (5.7) we infer that F* admits a L-S-deforma­
tion on M through R-invariant ^-curves F** into V or T(3). The 
^-curves AF*1JJL on II are closed and L-S, and deform AF*IJL into &(1) 

or k(z). In résumé, ƒ = AF\ix is first L-S-deformed on II into AFffi and 
then into £(1) or &(3). 

This completes the proof of the theorem. 
I t remains to show that &(1), &(2), &(3), &(4) are in distinct L-S-

homotopy classes on II. Part of this result is already clear. For the 
property of a ^-curve ƒ being null homotop. on II is invariant of arbi­
trary continuous deformations of ƒ on II and in particular invariant of 
L-S-deformations. Thus the null homotop. ^-curves k(2) and &(4) 

4 In the proof of Lemma 33.1 suppose that a line element E of g at Q is tangent to 
a circle C with center at w==0. One can hold E fast in the deformation. A preliminary 
L-S-deformation should be used to make g convex towards the origin near Q. One then 
proceeds as before identifying Q with the point s — aoî the proof. 
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are not in the L-S-homotopy classes of &(1) and &(3). Moreover 
[^ ( 2 )]T^ [&(4)] as affirmed in Theorem 4.2. We must finally show that 

0<3>] ^ [*<*>] 

and going somewhat deeper characterize the classes [&(3)] and [&(1)] 
topologically. 

In §6 a numeral invariant d(f, E) of a L-S-homotopy class [ƒ] is 
defined in case ƒ not « 0 and ƒ is E-pole free. In §7, d(f, E) is replaced 
by a topological invariant ds(f) defined for an arbitrary top. image 5 of 
the projective plane, thereby freeing d(f, E) from its dependence on 
the special coordinate system E and the special representation II of 
a projective plane. 

6. The difference order d(f> E) when ƒ not « 0 . Let F be an ^-in­
variant closed ^-curve on M. In the case in which F is £-pole free 
an angular order P(Fi, E) of the kernel F\ will be defined. For this 
purpose it is necessary that M receive an orientation from E. 

The E-orientation of M. Corresponding to the coordinate system E 
of My M will be oriented as follows. Let C(x) be an arbitrarily small 
circle on M with center at x in M. As previously, let Z± i = (0, 0, ± 1). 
The positive sense of C(Z_i) shall be such that a continuous branch 
of the multiple-valued function 

arc (3/1 + iy2) [y = (yi, y%, yz)] 

increases as y traces C(Z_i) in its positive sense. The sense of C{x) at 
other points x in M will be obtained by a continuous variation of C(x) 
from C(Z-i). In particular it should be noted that as C(Zi) is traced 
in its positive sense by a point y any continuous branch of arc 
(yi+iy2) decreases. 

Reference directions for the measurement of angles at a point x of 
ikfi = M—Zi—Z-i must be defined. For each x in Mi let Cx{x) be the 
circle through x parallel to the plane on which ff3 = 0. Let the positive 
sense of Cl{x) be that of increasing arc (y i+^2) for y in Cl(x). The 
reference direction at x shall be the positive tangent to Cl{x) at x. 
The sign of an angle at x measured from the reference direction will 
be determined by the orientation of M at x as defined by C(x). 

The angular order P(Fi, E). Let F be i^-invariant L-S, closed and 
E-pole free. Set/=-4-Fi/x. Let €1 be a positive constant so small that 
the submappings of F on which z~eid with a ^ ö ^ a + e i are top. 
mappings for each constant a. Given z = eid let ze denote the point 
e(o+<)i9 We suppose that 0 < e < € i . Let HF(z, e) denote the angle at the 
point x = F(z) in M, measured from the reference direction at x to the 
positive tangent at x to the great circle on M leading from F(z) to 
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F(zt). For fixed € let HF(z, e) be chosen so as to vary continuously 
with z in G. Since F( — z) = —F(z) it is clear that 

(6.1) HF(- 1, e) = - #2,(1, «0 (mod 2TT) 

so that 

(6.2) ff,(- 1, e) + HF(1, e) = 2f7r 

where r is an integer. We set 

HF{- 1, €) + 23>(1, e) 
(6.3) P(E1? E) = — ^ - ^ ^ - ^ 

and note the following. 
The value of P(Fi, E) is independent mod 4 of the choice of e in 

(0, €i), of the choice of F between the two ju-antecedents of/, and of 
the choice of HF among the possible continuous branches of this angle 
function. For HF(z, e) can be chosen as to vary continuously with 
(z, e) for € in (0, €i) and z in Ci, so that the left member of (6.2) is 
independent of e in (0, ci). If F and F* are the two /^-antecedents of 
ƒ, F(z) = —F*(z), so that one can take 

HF*(z, e) = - Hr(z9 C). 

Hence 

P(E* E) = - P{FU E) = P(Fly E) (mod 4). 

Finally a change of the continuous branch of HF will change the left 
member of (6.2) by an integral multiple of 4w and so leave P(Fi, E) 
unchanged mod 4. 

The difference order d(f, E) . Let ƒ not « 0 be a L-S-closed £-curve on 
II which is E-pole free. Let F be a /-t-antecedent on M of ƒ on II. We set 

d(f, E) s Q(F1} E) - P(Fh E) (mod 4) 

and observe that d(f, E) is independent of the choice of F as /i-ante­
cedent of ƒ, and of any i^-invarient L-S-deformation of F on Mi. 

One sees that 

d(k(1\ E) s <2(ri, E) - P(Tlt E) = 1 - 0 (mod 4), 

d(k(Z\ E) s Ö(ri3), E) - P(r i 3 ) , E) - 3 - 0 (mod 4). 

An immediate conclusion is that &(1) admits no L-S-deformation on II 
into fc(3) through ^-curves which are E-pole free. To remove the latter 
condition, deformations must be made through the poles of E and 
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the effect on d(f, E) determined. For this purpose ^-curves on II 
whose At-antecedents on M are broken geodesies are useful. 

Admissible broken geodesies on M. In Morse and Heins [ l ] use has 
been made of L-S-curves composed of sequences of a finite number of 
straight arcs. The analogous ^-curves on M are sequences of a finite 
number of geodesic arcs each less than TV in length, with nonzero 
angles at the vertices (the junction points of successive arcs). A 
£-curve on M of this character will be called an admissible broken 
geodesic. Admissible broken geodesies are L-S. A deformation on M 
of an .^-invariant closed p-curve F through admissible broken 
geodesies Fl will be termed admissible if the number of vertices is 
independent of t, if the vertices vary continuously with t and remain 
distinct on any £-curve F*, if the point F*(l) is a vertex of F\ and if 
each p-curve Fl is J^-invariant. The methods of Morse and Heins [ l ] 
suffice to prove the following lemma. 

LEMMA 6.1. Let e be a positive constant. Any R-invariant L-S-p-curve 
F on M admits an R-invariant L-S-deformation into an admissible 
broken geodesic displacing each point F(z) on M at most e in this process. 

Any two R-invariant broken geodesic closed p-curves F and F' which 
are in the same R-invariant L-S-homotopy class, can be admissibly de­
formed on M into each other through R-invariant broken geodesies, pro­
vided a suitable number of vertices are initially added to F and Ff. 

With this lemma as an aid, the following theorem can be proved: 

THEOREM 6.1. If f not^O and ƒ ' not~0 are two closed L-S-p-curves 
on II in the same homotopy class on II and if f and ff are E-polefree, then 

(6.5) d(f,E) = d(f',E) (mod 4). 

The theorem follows at once from the definition of d(f, E) if ƒ can 
be L-S-deformed into ƒ ' on II through ^-curves which are £-pole free. 
In any other case we can suppose, without loss of generality, that the 
/z-antecedents F and F' on M, of ƒ and f' respectively on II, are ad­
missible broken geodesies which are E-pole free. In accordance with 
Lemma 6.1, JF can be admissibly deformed into F' through a family 
Fl of broken geodesies. If use is made of the freedom of small displace­
ments of the vertices of Fl, we can be assured that F* is £-pole free 
except for a finite set of values tu • • • , tn of t, that no vertex of 
jp« (i = 1, • • • , w) is at a pole of E, and that F^ has just one point in 
common with the poles of E. 

The conventions as to the measurement of angles are such that as a 
geodesic arc of F\ moves across the pole (0, 0, 1) 
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AP(F[, E) = AQ(Fi, E) = ± 2 

so that dip, E) is unchanged by such a passage. When a geodesic 
arc of F[ moves across the pole (0, 0, —1) 

AP(Fl, E) = - AG(Fi, E) = ± 2. 

The difference d(/*, £ ) mod 4 is accordingly invariant as / increases 
from 0 to 1. This completes the proof of the theorem. 

Reference to (6.4) gives the following corollary of the theorem. 

COROLLARY 6.1. The models k(1) and k(z) on II are not in the same 
L-S-homotopy class on II. 

By virtue of Theorems 5.1 and 6.1 any L-S-£-curve ƒ no t^O on II 
which is Z£-pole free is in the L-S-homotopy class of £(1) or £(3) accord­
ing as d(f, E) = 1 or 3 mod 4. This determination of the L-S-homotopy 
class of ƒ depends upon our special model II of the projective plane 
and upon the coordinate system E. We shall remove this dependency. 

7. Invariant orders and models. We begin with the following 
lemma: 

LEMMA 7.1. Any simple closed p-curvef not^O on II can be deformed 
on II into any other such p-curve on II through simple, closed p-curves. 

I t will be sufficient to show that ƒ can be deformed into &(1) in the 
manner required. If F is a /^-antecedent of ƒ it will be sufficient to 
show that jPcan be deformed on M into T through i?-invariant simple, 
closed ^-curves on M. The required deformation will be defined as a 
sequence of five deformations. 

(1) We first deform F in the required manner into an jR-in variant, 
simple, regular closed p-curve 7?(1). With obvious precautions to main­
tain a simple curve the proof of Lemma 5.2 will suffice. 

(2) We next rotate M in such a manner that F{1) is deformed into a 
£-curve i*2) for which F<2>(1) = 1. 

(3) A suitable rotation of M about the xi axis will then carry F<>2) 

into a p-curve F{z) which is tangent to T at the point (1, 0, 0). 
(4) If F[® is not E-pole free its kernel F^z\ with its simple projec­

tion on II, intersects (0, 0, 1) in a point Fi3\z) for just one value of 
z on G. A suitable L-S-deformation of F^ near this point of intersec­
tion and a corresponding i?-invariant L-S-deformation of F(s) will 
yield a simple closed p-curve i7(4) which is E-pole free. Moreover 

(7.0) Q(F«\E) = ± 2 

as one sees on projecting Mi stereographically from (0, 0, 1) onto the 
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plane tangent to M a t (0, 0, —1). Finally we can suppose that the 
+ sign holds in (7.0). For if one keeps 7^4) simple and regular and 
deforms a tongue once over (0, 0, 1), the order (7.0) of F(é) will be 
changed from —2 to 2, if initially —2. 

(5) The resultant p-curve JF(4) is canonical in the sense of §5. Use 
can be made of the mapping W of Mi into the ring (5.10) of the w-
plane. On this ring there exists a canonical p-curve 12 such that 

In particular 12 has the plane order 1 relative to w = 0 in the ^-plane. 
I t follows that there exists a deformation of 12 on the ring (5.10) 
through simple, canonical ^-curves 12', O ^ ^ l , on the ring into the 
£-curve w = z = edi. On M, F can accordingly be L-S-deformed 
through simple canonical ^-curves into T. 

Hence ƒ can be deformed on II in the manner required into &(1). 
Various methods (including conformai mapping) are available to 

prove the following. 
(i) Let g\ O ^ / ^ l , be a 1-parameter family of simple closed 

^-curves in the (u, z;)-plane of which gl is the circle C:z = ei9. Let Gl 

be the closure of the interior of gK There exists a continuous 1-param­
eter family of top. mappings T% of Gl into the closed disc bounded 
by C, such that Tl maps gl(z) into z and G1 is the identity. 

Recall that an isotopic deformation of a manifold S is defined by a 
continuous 1-parameter family of top. mappings of S onto 5. With 
this understood we state the following lemma. In proving this lemma 
it will be convenient to denote the carrier of a £-curve F by | F\. 

LEMMA 7.2. A ny homeomorphism H of IL can be isotopically deformed 
into the identity on II. 

Let K be an R-invariant homeomorphism of M such that AK = H. 
Set 7? = X~ i r . By virtue of Lemma 7.1 there exists a continuous 
1-parameter family of i?-invariant, simple, closed ^-curves F* on M 
which deform F into T. Let 2 ' , 0^ / ^g l , be a continuous 1-parameter 
family of closed domains on M bounded by the respective Jordan 
curves | F*\. Observe that 2 1 is a hemisphere of M bounded by | r | . 
I t follows from (i) that there exists a continuous 1-parameter family 
of top. mappings Tl of 2* onto the hemisphere 21, which, in particular, 
map the Jordan curve | Fl\ onto the circle | r | in such a manner that 
T{z) is the image of Fl(z) and Tl is the identity. The mappings T* 
can be extended over M by reflection, that is, so that 

T>{~%) = - T\x) (X, I)G(IX /). 
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So extended Tl
t O ^ / ^ l , defines an isotopic deformation of T° into 

the identity T1. 
I t remains to deform K isotopically into T°. By definition KF = T 

so that K(x) = T°(x) when x is in the Jordan curve | F\. By a theorem 
of Tietsze there is an isotopic deformation of the mapping K re­
stricted to 2°, into r ° , likewise restricted to 2°, leaving | F\ pointwise 
fixed. This deformation can be extended to all of K by reflection in 
the origin, so as to yield an ^-invariant isotopic deformation of K 
into JT°. Hence K is isotopically deformable into the identity through 
.R-invariant top. mappings of M onto M. 

The lemma follows. 
Proof of Theorem 1.1 of the introduction. The £-curve k whose mul­

tiple tracings &(1), k(2\ &(3), k(4) appear in Theorems 4.2 and 5.1 is 
a simple, closed p~curve on II with k n o t ~ 0 on II. I t follows from 
Lemma 7.1 that in these theorems k can be replaced by any other 
simple, closed ^-curve h such that h n o t « 0 . This completes the proof 
of the fundamental Theorem 1.1. 

Further invariance of d(f, E). We now admit any coordinate system 
E' obtained from £ by a rotation of E about the origin, or by a re­
flection of Ef in the origin. We have seen that d{f, E) is independent 
of the L-S-deformation class of ƒ provided only that d(f, E) is well 
defined, that is, provided t h a t / i s .E-pole free. The following theorem 
shows the essential top. invariance of d(f> E). 

THEOREM 7.1. Let f be a L-S-closed p-curve onU,Ha homeomorphism 
of II andff—Hfthe transform off under H. If E and E' are admissible 
coordinate systems such that f and ff are respectively E and E'-pole free, 
then 

(7.1) d(f,E) = d(f,E>). 

We shall first show that 

(7.2) d(f1E) = d(HfJE) 

provided ƒ and Hf are E-pole free. Relation (7.2) follows from Lemma 
7.2 according to which II can be isotopically deformed into the 
identity, thus implying a L-S-deformation of Hf into ƒ. From the 
invariance of d(f, E) under such deformations of/, (7.2) must hold. 

We shall next show that 

(7.3) d(f,E) = d(f,E') 

provided ƒ is E and E'-pole free. To that end let T be the orthogonal 
transformation by virtue of which E' = TE. I t is trivial that 
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(7.4) d(f, E) = d(Tf, TE). 

But ƒ and ƒ ' are E'-pole free so that 

d(Tf, TE) = d(J, TE) = d(f, E') 

according to (7.2). Hence (7.3) holds. 
To establish (7.1) let £ " be chosen (as is possible) so that ƒ and 

ƒ ' are E "-pole free. By hypothesis ƒ is E-pole free, a n d / ' is E'-pole 
free. Hence 

d(f, E) - d(f, E") = d(f', E") = d(f', E') 

in accordance with (7.2) and (7.3). This completes the proof of the 
theorem. 

Definition of an invariant S-or der of f when f not^O. Let 5 be an 
arbitrary top. model of the projective plane, and ƒ an L-S-closed p-
curve on S with ƒ n o t ^ O on 5. Then d(Zf, E) is independent mod 4 
of the choice of Z among top. mappings of S onto II and of the choice 
of E among admissible rectangular coordinate systems for M pro­
vided Zf is E-pole free. 

For each L-S-closed p-curve of not^O on S we set 

d(Zf, E) = ds(f) (mod 4) 

provided Zf is E-pole free, and term ds(f) the S-difference order of f. 
The fundamental nature of the top. invariance of ds(f) is specified 

in the following theorem. 

THEOREM 7.2. The S-difference order ds(f) of a L-S-closed p-curve 
ƒ not^Q on S is independent of the choice of f in its L-S-homotopy class. 
If S is mapped top. onto S' under a mapping K and if f' ~Kf, then 

(7.5) ds(f) = ds>U') (mod 4). 

The difference order ds(f) has but two possible values 1 and 3, mod 4. 
A necessary and sufficient condition that ds(f) = l mod 4 is that the 
L-S-homotopy class off contain a simple, closed p-curve fi not^O on S. 

Let Z and Z ' be arbitrary top. mappings of -S and 5 ' respectively 
onto II. Then by definition 

ds(f) = d(Zf, E), ds,(f) = d(Z'f, E') 

provided E and E' are admissible coordinate systems for M such that 
Zf and Z'f' are respectively E and E'-pole free. Observe that 

Z'f = (Z'KZ-l){Zf) 
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and that the transformation 

Z'KZ~l = H, 

is a top. mapping of II onto II. Hence 

d(Zf, E) = d(Z'f', E') 

in accordance with (7.1). Thus (7.5) holds. 
The first statement in the theorem is a consequence of Theorem 

6.1. 
To establish the last statement in the theorem suppose first that 

<**(ƒ) = 1. Recall that [ / ]=I> ( 1 )] or [><»] by Theorem 5.1. But we 
have seen in (6.4) that 

<*(*<*>, JE) = 1, d(k«\ E) = 3 (mod 4) 

so that [ƒ] = [&(1)]. Thus k(1) is a simple closed p-curve in [ƒ] as af­
firmed. 

Conversely, suppose that [ƒ] contains a simple, closed p-curve jfi. 
Recall that [fi] = [^(1)] as a consequence of Lemma 7.1. Hence 

da(J) = d(k«\ JE) = 1 (mod 4). 

This completes the proof of the theorem. 
The part of Theorem 1.1 which concerns the case ƒ n o t « 0 can be 

completed as follows. 

THEOREM 7.3. If'fnot « 0 is a L-S-closed p-curve on the top. image S of 
a projective plane [ƒ] = [k(1)] or [&(3)] according as ds(f) = 1 or 3 mod 4. 
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