THE NORMAL APPROXIMATION TO THE POISSON
DISTRIBUTION AND A PROOF OF A
CONJECTURE OF RAMANUJAN!

TSENG TUNG CHENG

1. Summary. The Poisson distribution with parameter \ is given
by

n AT
(1.1) F(x) = E pr where ?r = _"' 6_)‘, n = [x];
r=0 r:

for x = 0. It is well known that F(x) converges to the normal distribu-
tion as A— . We shall prove the following theorem.

THEOREM 1. Let x =N"Y2(n—N\+1/2). Then

n )\r z
> — e = (2m)12 f D gy

r=0 7

(1.2) .
+ (1/6) (2eN)~12(1 — a?)e e 4,

where & satisfies the inequality
(1.3) | 8] < .076A1 + .0430~%/2 4 13\,

This formula is analogous to Uspensky's [1]2 estimate of the error
term in the normal approximation to the binormal distribution and
our proof consists in an adaptation of Uspensky’s method.

At the same time we verify the following conjecture of Ramanujan:
for every positive integer n the value of 0 which satisfies the equation

n—1 n

n
P —|—0;—!}e n=1/2

lies between 1/2 and 1/3, and tends to 1/3 as n—». A proof of the
above statement was given by Szegé [3]. We give a more elementary
proof, using only standard tools, for the following theorem.

(1.4) {1+%+---+

THEOREM I1. For n=7 the root of the equation (1.4) in 0 lies between
.37 and 1/3.

Finally, we shall obtain the following asymptotic expansion of 6:
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2 Numbers in brackets refer to the references cited at the end of the paper.
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(1.5) 9 = 1/3 + (4/135)n~ + (8/2835)n=2 + O(n~9).

2. Proof of Theorem I. From the characteristic function

0
Z preitt = PACES N

re=0

we get
@2.1) f Tt pED gL = 20p,
From (2.1) it follows that
5 4= ([ TGiny/2y
. -exp {\(cos t — 1)} sin [(# + 1/2)t — X sin ¢]dt
+ 2n)—t fo T(sin 1/2)~Vexp {\(cos ¢ — 1)} sin (A sin ¢ + £/2)dt.

The second integral is independent of A, since its derivative with
respect to N vanishes, as may easily be verified. Putting A=0 we see
the value of the integral is 1/2. Hence we have

Z”: ->\—re"‘ - — = (27! f (sin £/2)1

r=0 r!

(2.2) -exp {\(cos t — 1)} sin [(n + 1/2)¢ — \ sin ¢]d¢
= T.

To estimate the integral I we introduce
= (Zr)*lf wc»:““’”(t/?.)“1 sin [A!2xt + N(¢ — sin 7)]ds.
0
Then
|1 - 1] < (2m) f " g2y

(2.3) + (27r)‘1f " {e‘” sin® ¢/2(sin t/2)~1 — —)\t2/2(t/2)_1}dt
0

=J1+ T2+ Js,

where the integrals J; are defined and estimated as follows:
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Ji= (2m)! f {2 sin® t/2(sin 1/2)~1 cos /2 — e1%(1/2)~1} dt
(2.4) b
- — 2n) f MI(/2) -1t < 0
2

(2.5) J, = (2m)1 f eMI2(3/2)1dt < (32m)~1 f B gy,
Ty = (2m) f ¢ sin? 412(sin £/2)1(1 — cos £/2)dt
0

< (2m)! f =2\ sin? /2, (sin £/2)~!
0

{sin2 /2 cos t/2

(2.6)
P + (1 — cos #/2) sin? t/2}dt

2 x
< (8m)! f te 124t 4 (320)1 f B gy
0 0
It follows from (2.3)—(2.6) that

| I — 1] < (8m)! f te 2124t + (32m) f 1P~ g
0

0

2.7
= (8m\)! + (73/256)\~% < (8aN)~! + .13A~2.

Now we write

0
I, = w‘lf £1e /2. sin NV2xt- cos N(¢ — sin £)d¢
0
w‘lf tle 12 cos NM2xt-sin M(¢ — sin £)ds
0
(2.8) = {w“l f £l 2 sin NV 2widt + T 4}
0
0 )\t3
+ {‘n"‘lf e 2. cos >\1/2xt-——6— dt + Jr,}
0

. 1
= @me f o1+ 2N = #)e = T+ T
0
where

Jy= w‘lf e I2[cos M(t — sin &) — 1]dt,
0
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© R . . YA
Js = r‘lf £~1e12 cos NM2x¢- | sin AN(¢ — sin §) — vy d.
0

Upper limits for | Jy| and | J5| are obtained as follows:

™ 24 — sin §)2?
|]4| < ,,r—1f t—le—)\t"/z.-)\_g__?sﬂ dt
0

(2.9)
0 A2t5
<a! f e —dt = (9N)7;
w0 pVAS
I]E! < r“f t“le““2’2{|:—— — AM¢ — sin t)]
0 6
2.10) + [\ — sin ) — sin A(¢ — sin t)]} dt

[ . pV A 39
< T_lf leMt /2[__ + ___:Idt
0 120 64
= (2x)~1/2\3/2[1/40 + 35/432] < .043\—%2,

From (2.7)-(2.10) and the inequality (8w)~'4 (97)~1<.076 the re-
quired result follows immediately.

3. Proof of Theorem II. Solving (1.4) for 6 and using the formula
(2.2), we get

(3.1) 20— 1= — I'/(n"e"/nl),

where

I'=(2x "1f01<sin —;—)_l~exp {n(cos t — 1)}

fel(rrd)pmv]

T £ \1 t
= g1 f (sin ?) -exp {n(cos t— 1)} -cos -2--sin n(t — sin t)d¢
0

2 t t2 1/2
= 27! f Fle—nt12.gin n[Z arc sin— — t(l — ——) ]dt.
0 2 4

By Maclaurin expansion,
2 arc sin #/2 — (1 — £#/4)12 = £3/6 + /80 + 347/1792 + #1(2),
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where f(¢) is an increasing function in the interval 0 <¢=<2. Hence
sin #[2 arc sin £/2 — (1 — #2/4)1/2]
< sin (n#3/6 + nt5/80) + 3n87/1792 + #ni?f(2)
< (n#3/6 + nt5/80) — (n83/6 + ns®/80)3/6
+ (n#3/6 + nt5/80)5/120 + 3n87/1792 4+ .0024ns°.

Assume n=7. Then the last expression is positive when ¢>2, and
therefore

I' <2 if” f1gnit {nt3+nt5 1(m3+m5)3
. e"‘" . —_— —_— e — —
= J, 6 ' 8 6\6 ' 80
(3.2)

i 1 (nt3 n nis )5+ 3nt? + 0024 t“} i
12006 80/ 1792 " "

< (2am)12{1/3 — 087w + 0122 + 1.87n~3
+ 410~ + 6075 + 50~% + 2077},
In obtaining the last inequality we have, as before, used the familiar
relation:

2(2x)—12 f 2he NI = 1.3 ... . (2k — 1).
0

Taking in (3.2) =7 we get
(3.3) I' < (2rn)~12(1/3 — .03n7Y).
On the other hand we can write
2 arc sin £/2 — (1 — $2/4)12 = 3/6 + £5(%)
= £3/6 + 0578,
because g(¢) increases and g(2) <.057. Hence

2 nt"’
> 21r“1f t"le‘(”””‘z{sin—(s— - .057nt5} dt
0

_1 d /D nid 1/ nid\® .
> 27 flem@nttd— — —f—— ) — 057ni5;dt.
) 6 6\ 6

Therefore
(3.4) I' > (27n)~12(1/3) — .505%7Y) > .26(2wn)"Y/%, when n = 7.
From (3.1), (3.3), (3.4), and Stirling’s formula,
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Q2an)2pme < n! < (2wn)l/2pnentliizn,
it follows that 20 —1< —.26, or §<.37; and
20 — 1> — el/12n. (2en) /2. (2rm)~Y2(1/3 — .03/n)

> — (1 + .091)(1/3 — .03nY)

= —1/3 + .0027n~2 > — 1/3,
and therefore 6>1/3.

4. Proof of the equation (1.5). It can be verified without difficulty
that
I' = (2an)~12{1/3 — 47/540n~1 4 71/6048n~2} + O(n~7/%).

From a modified form of Stirling's formula due to Feller [2],
namely, for n =4,

1 1+
nl = 2mn)*n"exp s —n + — — } s

12 360n3 8] <16,

it follows that
20 — 1= — [1/3 — 47/540n~1 + 71/6048n~2 + - - « |
Jr4+ 1120t + 1/(2. 12902 4 - - - ]
= — 1/3 4+ 8/135xn~! + 16/28351n~% + O(n~%).

An obvious reduction then gives the equation (1.5).
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