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In a recent paper [4],1 Montgomery showed that in a locally 
euclidean 3-dimensional group, any 2-dimensional closed subgroup is 
also locally euclidean. In this note we prove an analogous result for 
higher dimensions and more general spaces. 

THEOREM. Let G be a locally compact space which is both a topological 
group and an n-dimensional orientable generalized manifold. Let H be a 
closed connected (n — 1)-dimensional subgroup. Then, if H carries a 
nonbounding (n — 1)-cycle, His also an orientable generalized manifold. 

The terminology used in the statement of this theorem, and in 
what follows, is that of our two previous papers on generalized mani­
folds [l, 2] , and we assume that the reader is familiar with them. 

We make, however, one change. We find it convenient to define 
infinite cycles in the following way: We add to G an ideal point, g+, 
taking as neighborhoods of g+ those open subsets of G whose closures 
are not compact. Then G+ — G\Jg+ is compact. Now an infinite cycle 
of G is defined to be a relative cycle of G+ mod g+. That this definition 
of infinite cycles is equivalent to the one used in [2] follows from 
Theorem 1.1 of [2]. 

LEMMA 1. Given any neighborhood M of the unit element e of G, there 
is a neighborhood N of E such that for any infinite cycle Tk on H, 0 ̂  k 
^n — 1, and for any g£iV, rk~g-Tk on MH. 

PROOF. Let Mn-i(ZM have a compact closure. Choose a sequence 

Afn_l D Nn-i D Mn-2 D • • O Mo D No 

such that Ni is obtained from Mi by the local connectedness of G in 
dimension i, and such that Mi - MiCNi+i. Finally let N be such that 
N-NCNo. 

Now let gE.N. To show that Tk~gTk on M-H, it is sufficient to 
show that the coordinates of these cycles on the nerve of any cover­
ing U of G are homologous on (MH)+. To this end, given a covering 
U, choose U'<*U. Let X be the complement of the union of those 
sets of Z7' which contain g+. Then X is a compact set. Let Xi = 3Jo • *X" 
and Xi = Mi-i'Xi-i. Each Xi is a compact set. 
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A finite number of translations of Nn-i cover Xn> say 

For each i, let Ui,n-i be a refinement of U' such that any (» — 1)-
cycle on Z7<tn—1 in g*\n-i-iVn-i has its projection to U' bounding in 
gi,n-i-Mn-i. Let Un-i be a common refinement of these coverings. 

Next, a finite number of translations of iVn_2 cover Xn-\. From 
these we obtain a refinement £/n-2 of Un-i by the procedure above, 
this time using the local connectedness of G in dimension n — 2. 
Proceeding in this fashion for another n — 2 steps we arrive at a cover­
ing Uo. 

Let TQ and g-Tj be the coordinates of Tk and ^ P o n Uo. We assert 
that 7rTj; and irg-Tl axe homologous on U on (M-iï)+, where 7r is the 
projection from Uo to Z7. Let A be the cartesian product of \TI\ 
with a unit segment, subdivided simplicially in such a way that all 
the vertices of A are in the base, A 0 = |r* | X0, and in the top, Ax 

= | rS | X I . Let A be the closed subcomplex of A generated by those 
simplexes of Tj which are on X. We define a partial realization r' of 
A on Uo by letting r V = (r if c £ A 0 and T'<r = g<r if <7£Ai. 

T' induces a partial realization r' of A on Uo. In view of the choices 
of the coverings made above, the usual argument shows that there 
is a full realization f of A on £/', where, if To is the projection from 
Uo to U', r = 7To?' whenever the latter is defined. Also, f A is on 

We can now define a full realization of A on U in the following 
fashion. The projection wo can be so chosen that a vertex of Uo not 
on X is projected into a vertex of U' which contains g+. Since U'<*U, 
a projection ir of Uf to U can be so chosen that any simplex of Uo 
which has a vertex not on X is projected by TTTO into the simplex of U 
consisting of those vertices of U which contain g+. Any cycle in this 
simplex bounds in this simplex, so 7r7r0r'(A —A) can be filled in to 
make a full realization of A—A on U, and this together with TTTA 
makes a full realization r of A on U. Since r J X 0 ^ r $ X l on A, 
r ( r S X 0 ) ~ r ( r 5 x l ) on U. But r(rJXO) =7nr0rS and r ( r j x i ) =7r7r0g 
• Tj. Since it is easily seen from the construction that this homology 
takes place on (M»iî)+» the proof is complete. 

Clearly the same proof suffices for the following lemma. 

LEMMA 2. Given any neighborhood M of e in G1 there is a neighborhood 
N of e such that for any closed subset X of H and any cycle Tk of H mod 
X, Tk~g-Tk in MH mod M-X, whenever gÇ£N. 

LEMMA 3. If D is an open connected subset of G, then any two points 
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of D lie on a compact connected subset of D. 

PROOF. Since G is lc°, any neighborhood O of a point doiD contains 
a neighborhood W of d with WQD such that any point wÇzW lies, 
together with d, on a compact continuum in OC\D. Now let D% be 
the set of all points of D which can be joined to a fixed point diÇiD by 
compact continua. Then, by the above, D\ is both open and closed 
in D. Hence, since D is connected, Di is all of D. 

LEMMA 4. If 0 is a neighborhood of e such that Q(0-H) (where Q 
means closure) is not all of G, then OH—H has at least two components. 

PROOF. Let g be a point of G — Q(0-H), and let K be a compact 
connected set which contains both e and g. Let N be a neighborhood 
of e in 0 , chosen by Lemma 1. A finite number of translations of N 
cover K, and from these we may choose a sequence 

eeN,Ni,N*,---,Nk3g 

where Ni = gi-N and such that iV/^iV^+i^O. Let g* be a point of 
Nir\Ni+1. Now, gi-iGzgi-N, so g^-gi-iÇîN. Hence, by Lemma 1, 

where r n _ 1 is a nonbounding cycle on H. Therefore, 

Similarly, giGgi-N, and 

Thus, we have 

pn-l ^ g-Yn~1. 

Now r ^ - g - r » - 1 is a cycle of H\J(G-0H) and r ^ - g - P 1 - 1 ^ 
in G. Hence [3, p. 227 (14.2)] there is in G a cycle Tn mod (H\J(G 
-OH)) such that i?Tn = r w - 1 - g - r n - 1 . Let T> be the fundamental 
rc-cycle of G, and let F j be the part of Tn on G-(0-H-H). Let 

In a neighborhood of any point of OH—H, Tn is homologous to 
some multiple of F n . If we assume that OH—H is connected, then 
(cf. [l, p. 569]) this multiple, is the same for all points of 0-H—Hf 

that is, rTn = T%. 
By definition, Tj is on H\J(G-0H). Since H and G-0- H are 

closed and disjoint, and since dim H<n, F? must be on G — 0 H, so 
F H is also on G-OH. 
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But, from 0 = FTn = F(Tni+Y2), we have 

FT: = - F(Tl) = - F(rTn) 

= - r ( F - g-T ). 

This is not on G — 0 >H, since r n _ 1 is on H. Thus, the assumption that 
OH—H has only one component leads to a contradiction. 

We now choose a fixed connected neighborhood of e, satisfying the 
condition of Lemma 4, and denote by J the product of H by this 
neighborhood. We note that J is a connected generalized w-manifold. 
I t is not a group, but for any two elements of J which are close 
enough to H, their product in G is in J. 

LEMMA 5. H is the boundary of each domain of J—H. 

PROOF. Let D be any component oî J—H. Since J is lc°, D is open. 
Some point hÇ^H is a limit point of D, or else J would not be con­
nected. Let 0 be a neighborhood of e. Then h-0 contains a point 
dED^h^tiSyho^d.Now h'1-d^oEO.Buth^-disalsoinD.For o^Hf 

and, since-ff is connected, Ho lies in one component oî J—H. Since 
ho —disinD, H olies inD, and consequently, eo = o is in D. There­
fore e is a limit point of D. Similarly, if h is any other point of H, 
then the neighborhood h-0 contains ho which is in Ho and there­
fore in D. Thus, h is a limit point of D, which proves the lemma. 

LEMMA 6. J—H has just two components. 

PROOF. 2 By Lemma 2, it is enough to show that H does not have 
three complementary domains. Suppose there were three, Do, Dx and 
D2. Let pu p2 be points in Di and D2 respectively, and let Yu Y2 be 
neighborhoods of pi, p2 such that Yi is compact and is in Di. 

y^ — pl—p2 is a compact O-dimensional cycle in F = Yi\JY2. Y° not 
^ O in J—H, since pi and p2 are in different components. But for any 
point doE:Do,y0~0 in J—d0-H. For let 0 be a neighborhood of e not 
meeting d0Hf which is in D0, and let 0 ' be chosen so that every 
compact 0-cycle in 0 ' bounds in 0. Choose d i E U ' H A and d2G0' 
C\D2. Then di~d2 in 0. By Lemma 3, pi~di in 2?i, p2~d2 in -D2. 
Hence, pi~p2 in D^JD2\J0, which does not meet do* i ï . 

Now, by Lemma 5.2 of [2], there is a compact cocycle 7 n in Y 
such that (F^Yn)^ ) ' 0 in J—H, where P n is the fundamental w-cycle 
of J , and such that Y n ~ 0 in J—do-H, for any d0GD0. Since Yn is a 
compact cocycle of Di\JD2, there is an infinite w-cycle Tn of D±\JD2 

2 The main outline of this proof, and to some extent that of Lemma 7, is derived 
from Wilder [6, 7 ] . 
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such that KI(rn-Yn) = L Let r " - 1 = JFT», 30 that T ^ 1 is an infinite 
cycle of H. 

We now choose a neighborhood M of e which does not meet F, 
and a neighborhood N satisfying the conditions of Lemma 1. Let 
doGDQr\N. Then r*"1—dQ-Tn~l in M-H. Let P*= {T?} and let the 
chains involved in the homology r n ~ 1 ~d 0 T n - " 1 be {C*}. Then 
{T£n} = { r£ -C?} is such that FT'çn = do-Tnf\ By construction, 
Kl(T?-yi) = KI(r j -7Ö, since none of the chains C? meet F. 

{r£n} is not necessarily a Cech cycle. But, for each covering 
C/f, let UP(X) be an essential refinement (see [3, II 27: 13]) of Z7f 
relative to cycles of / + mod (d<>-H)+. Then {rfm} = { i r ^ r ^ } is a 
Cech cycle mod (d0-H)+ and K I Ç T " ? ^ = K I ( r f - 7 * ) for all f. 

But now we have reached a contradiction. For 7 W ^0 in J—do-H, 
so its Kronecker index with any infinite w-cycle of J—do H must be 
zero. But KI(r"»-Y.O = KI(rw«7n) = 1 . 

LEMMA 7. For each point hÇ^H, rk(J-H, h)=0 for l^k^n-l 
andr°(J-H, A) = l. 

PROOF. I t is sufficient to consider the case h = e. Given any neigh­
borhood V of e, choose a neighborhood Vi such that Q(Q{ Vi • Vi) 
-B{V)) does not meet Ti, where B(V) is the boundary of V. Next 
choose a neighborhood V» such that if 7 ° C Fi, then 7 ° ^ 0 in Vi. Let 
F3 be such that Tz-H does not contain all of F2, and, finally, let W 
be such that if yhQ W, then 7 f c ^0 in V$. We assert that for k ^ 1, any 
7fc in IF—H bounds in V—H. 

For let A and 5 be the two components of J—H and let yh
 = 7 * + 7 Ô , 

where 7* is the part of yk in -4. Since fe ̂  1, 7J; is a cycle and it is suffi­
cient to show that 7 ^ 0 in VT\A. If it does not, let 0 be an open set 
in WT^A such that 7* is in O and O does not meet H. Then, by 
Lemma 5.2 of [2], there is a compact cocycle yn-k in 0 such that 
Tn-yn-k~yk in 0, yn-k not ~ 0 in VC\A, and 7 W -A ! ~0 in Vz. Let r n -* 
be an infinite cycle of VC\A such that KI(rn~fc-7n-fc) = 1. 

In order to apply an argument similar to that of the preceding 
lemma, we choose a point of B in the following fashion. Let c b e a 
point of B in V2 and not in Q(Vz>H). By the choice of F2, there is a 
continuum K in Fi which contains both c and e. Let M be a neigh­
borhood of e such that M H does not meet 0. Choose N by Lemma 1 
and so that NK is in V\. N - R— H is an open subset of / and hence 
is locally connected. Consequently, each component of NK—H is 
also open. Let C be that component which contains c. Since C is 
open and NK is connected, some point h in H must be a limit 
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point of C. h is in Fi, since N-K is in Vu and therefore D~C-hrl, 
containing d = chr1, is an open connected subset of B and e is a limit 
point of D. Also, since c is not in Vz-H, neither is d. 

From ND and iV itself a simple chain of regions running from e to 
d can be extracted, each element of the chain being a translation of N. 

Returning now to r ^ * , let r*-*-1 be the par£ of FYn~k on H, so 
that r*-*-1 is a cycle of H mod X, where X=Vr\Ç{H- V). Using 
the simple chain above, we have Yn~k~1^^d-Tn~k~1 in MD. Let the 
chains of this homology be {C"""*}. Then r j ^ - Ç T * , for each f, is, 
by the choice of Fi, an infinite cycle of V3. Also, by the choice of Af, 
no CT* meets 0, so KI((r?"*-C?-*)-7£-j t )-KI(rr*-7Î;-*) = l for 
each f. 

Now we can proceed to the same contradiction we reached in the 
previous lemma, since Yn-&^0 in V3 so its Kronecker index with any 
infinite cycle of Vz is zero. This disposes of the case kètl. 

For k = 0, let 7 0 be based on a pair of points, one in WC\A and the 
other in WC\B. The proof used above applies to show that any 7 0 

in W—H is homologous in V—H to a multiple of 70 . 

LEMMA 8. For each point hofH\ ru{h) =0for k<n — 1 andrn-i(h) = 1. 

This is an immediate consequence of Theorem 6.2 of [2] and 
Lemma 7. 

LEMMA 9. H is lcn~l. 

PROOF. Given a neighborhood V of e, choose Vi in V such that 
any 7fc+1 on Vi bounds in V. Choose WC. Vi by Lemma 7 so that 
any 7* in AC\W bounds in AC\V\ and similarly for B. We assert 
that any yk in TFPiiJ bounds on Tr\H. 

To show this it is enough to show that for any neighborhood 0 of 
e, 7 * ^ 0 in (0-H)r\V. In turn, to prove this it is sufficient to show 
that given any such yh and 0, and given any covering J7i, then there 
is a refinement U2 such that wly^O in {0-H)C\V. 

By Lemma 1 we can choose a point aC_AC\0 such that yk~a-yk in 
0-(T$Y\fiT) and we can choose a similar point b in BC\0. By the 
choice of TF, a -7*~0 in AC\ Vi, and similarly for b-yk. Thus, we have 
families of chains {C^1} and {Cft1} inO-(WniI)9 {Dft1} inAnVi 
and {.DjJ1} in S P t F Î such that ' 

Ẑ Ca.f = a-7 r — 7 f , FCb.r = 0'7r ~ Yr> 

FD a , r = a-7 r , FDb>t = 5-7f. 

Hence, for each f, 23JJJ1 —CS:1+Cjt1—23JJ1 is a cycle S£+1 on Z7f in 
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Vi. There is a refinement U2 of U\ such that TTJÔ**1 is the coordinate 
of a Cech cycle, Sfc+1 on V\. By the choice of Vif ô*+1M) in V, so 
there is a chain Ek+2 on Ui such that 

FEW - ^ r . 
Let £*+2 = E*+ 2+£*+ 2 , where £*+2 is the part of Ek+2 on 5 . Now 

The chain on the right-hand side is in 0 - 5 while that on the left is 
on Z . Hence, since A(^B=Ht Ek+l = FEl+2-Tr\D\%1 is in O ü 
and, of course, in F. But 

F ( - E ) -F(7r2Z>a,2) = 7r2a-7a. 

Hence, 7 rVy£~0 in (0-2?) Pi 7. But a -72^7* in 0-(Wr\H), so 
TT^^Oin (0-H)r\V. 

At this point, we have shown, by Lemmas 8 and 9, that H has the 
local properties of a generalized manifold. To complete the proof it 
only remains to show that H is orientable, that is, that it carries an 
(» — l)-cycle which is not carried by any proper closed subset of H. 

By Lemma 8, there are neighborhoods 0i and 02 of e such that 
there is an {n — 1)-cycle mod H—Oi which does not bound mod H— 02. 
By group translation, every point of H has associated with it such a 
non-bounding relative (n — l)-cycle. Now an argument due to Smith 
[5] shows that we can carry through in the present situation the 
proof of Theorem 7.1 of [ l ] to obtain the desired (» — l)-cycle. 

In conclusion, we point out that by restricting G, we can lighten 
the hypothesis on H. 

THEOREM. Let G be a locally compact separable metric topological 
group which is also an orientable n-dimensional generalized manifold. 
Let H be a closed connected (n — 1) -dimensional subgroup. Then H is an 
orientable generalized manifold if any one of the following conditions is 
satisfied : 

(1) H separates some open set of G. 
(2) For some open set 0 of H, there is a nonbounding (n — l)-cycle of 

H mod H -0. 
(3) G is locally euclidean. 

The Pontrjagin duality theorem for case (3) and Theorem 6.5 of 
[2] for case (2) show that both (3) and (2) imply (1). Now the proof 
of Lemma 1 of [4] shows that (1) yields a neighborhood of II which 
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is separated by H, that is, our Lemma 4. Since this is the only place 
in our proof where the original hypothesis on H is used, the rest of 
the proof can remain unchanged. 

In case (3), if dim G = 3, we have Montgomery's theorem, for any 
2-dimensional generalized manifold is locally euclidean [8]. 
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