TOPOLOGICAL GROUPS AND GENERALIZED MANIFOLDS
EDWARD G. BEGLE

In a recent paper [4],! Montgomery showed that in a locally
euclidean 3-dimensional group, any 2-dimensional closed subgroup is
also locally euclidean. In this note we prove an analogous result for
higher dimensions and more general spaces.

THEOREM. Let G be a locally compact space which is both a topological
group and an n-dimensional orientable generalized manifold. Let H be a
closed connected (n—1)-dimensional subgroup. Then, if H carries a
nonbounding (n—1)-cycle, H is also an orientable generalized manifold.

The terminology used in the statement of this theorem, and in
what follows, is that of our two previous papers on generalized mani-
folds [1, 2], and we assume that the reader is familiar with them.

We make, however, one change. We find it convenient to define
infinite cycles in the following way: We add to G an ideal point, g+,
taking as neighborhoods of g* those open subsets of G whose closures
are not compact. Then G+=G\Ug* is compact. Now an infinite cycle
of G is defined to be a relative cycle of G* mod g*. That this definition
of infinite cycles is equivalent to the one used in [2] follows from
Theorem 1.1 of [2].

LeEMMA 1. Given any neighborhood M of the unit element e of G, there
isa neighborhood N of E such that for any infinite cycle T* on H, 0k
=n—1, and for any g&N, I'*'~g-T* on M-H.

ProoF. Let M,_1C M have a compact closure. Choose a sequence
Mn—lD Nn—lDMn-—2D tt DMODNO

such that N; is obtained from M; by the local connectedness of G in
dimension 7, and such that M;- M;C N;,;;. Finally let N be such that
N-NCN,.

Now let g&EN. To show that I'*~g-T* on M-H, it is sufficient to
show that the coordinates of these cycles on the nerve of any cover-
ing U of G are homologous on (M- H)*. To this end, given a covering
U, choose U’'<*U. Let X be the complement of the union of those
sets of U’ which contain g+. Then X is a compact set. Let X: =M, X
and X;=M; ;- X;_;. Each X;is a compact set.
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A finite number of translations of N,_; cover X,, say
g1n—1"Nn_1, 201" Nau—1, * * * , Zkin—1"Np—1.

For each 1, let U;,.—1 be a refinement of U’ such that any (n—1)-
cycle on U; -1 in gin-1-Na—1 has its projection to U’ bounding in
Zin—1 Mn—1. Let Un—s be a common refinement of these coverings.

Next, a finite number of translations of N,_; cover X,_;. From
these we obtain a refinement U, of U,—1 by the procedure above,
this time using the local connectedness of G in dimension n—2.
Proceeding in this fashion for another # —2 steps we arrive at a cover-
ing U,.

Let Tt and g-T% be the coordinates of I'* and g-T* on U,. We assert
that #T§ and 7g-I'¢ are homologous on U on (M- H)+, where 7 is the
projection from U, to U. Let A be the cartesian product of II‘§|
with a unit segment, subdivided simplicially in such a way that all
the vertices of A are in the base, Ao=|I‘3| X0, and in the top, A
= |T%| X1. Let A be the closed subcomplex of A generated by those
simplexes of I't which are on X. We define a partial realization 7’ of
A on U, by letting /o =0 if cEAgand 7' =g -0 if ¢ EA;.

7/ induces a partial realization 7 of A on U,. In view of the choices
of the coverings made above, the usual argument shows that there
is a full realization 7 of A on U’, where, if 7 is the projection from
Uy to U’, 7=m¢™ whenever the latter is defined. Also, 7A is on
My H.

We can now define a full realization of A on U in the following
fashion. The projection my can be so chosen that a vertex of U, not
on X is projected into a vertex of U’ which contains g+. Since U’ <*U,
a projection w of U’ to U can be so chosen that any simplex of U,
which has a vertex not on X is projected by 7, into the simplex of U
consisting of those vertices of U which contain gt. Any cycle in this
simplex bounds in this simplex, so wme’'(A—A) can be filled in to
make a full realization of A—A on U, and this together with 7#7A
makes a full realization 7 of A on U. Since TEX0~T¢X1 on A,
7(TeX0)~7(T5X1) on U. But 7(T%X0) =7meIt and 7(TEX1) =mmog
-T%. Since it is easily seen from the construction that this homology
takes place on (M- H)+, the proof is complete.

Clearly the same proof suffices for the following lemma.

LeEMMA 2. Given any neighborhood M of e in G, there is a netghborhood
N of e such that for any closed subset X of H and any cycle IT* of H mod
X, T*~g-T% in M -H mod M-X, whenever g N.

LeEMMA 3. If D is an open connected subset of G, then any two points
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of D lie on a compact connected subset of D.

Proor. Since G is Ic?, any neighborhood O of a point d of D contains
a neighborhood W of d with WCD such that any point w& W lies,
together with d, on a compact continuum in ON\D. Now let D, be
the set of all points of D which can be joined to a fixed point d, ED by
compact continua. Then, by the above, D, is both open and closed
in D. Hence, since D is connected, D is all of D.

LeEMMA 4. If O is a neighborhood of e such that C(0-H) (where
means closure) is not all of G, then O-H — H has at least two components.

ProOF. Let g be a point of G— (?(0-H), and let K be a compact
connected set which contains both ¢ and g. Let NV be a neighborhood
of e in O, chosen by Lemma 1. A finite number of translations of N
cover K, and from these we may choose a sequence

e€N1N11N2s"°’Nk9g

where N;=g;-N and such that N;\N;;;50. Let g; be a point of
N:N\N;y. Now, g;.1€g:- N, so gi't-g;aEN. Hence, by Lemma 1,

n—1

-1 _ n—1
I\ ~ g ‘gi-1- T
where I'*~! is a nonbounding cycle on H. Therefore,
g 11”—1 ~ gi—l' I\n—l.
Similarly, g;Eg;- N, and
g I‘m—-l ~ gi. I‘n—-l’
Thus, we have
Tl ~ g.I"n—l.

Now I'*1—g.T'"1is a cycle of H\J(G—O0-H) and I'*"1—g-T'*~1~0
in G. Hence [3, p. 227 (14.2)] there is in G a cycle I'* mod (HU(G
—0-H)) such that FI»=I""1—g.T'»1 Let T be the fundamental
n-cycle of G, and let T be the part of T» on G—(0-H—H). Let
H=T"-T%

In a neighborhood of any point of O-H—H, I'* is homologous to
some multiple of T, If we assume that O-H —H is connected, then
(cf. [1, p. 569]) this multiple, is the same for all points of O-H—H,
that is, yI'r=T%.

By definition, I'f is on H\J(G—O0-H). Since H and G—O0-H are
closed and disjoint, and since dim H <z, It must be on G—0-H, so
FT% is also on G—0-H.
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But, from 0= FT"»=F(IT%+T%), we have

This is not on G—0- H, since I'*"!is on H. Thus, the assumption that
O-H—H has only one component leads to a contradiction.

We now choose a fixed connected neighborhood of e, satisfying the
condition of Lemma 4, and denote by J the product of H by this
neighborhood. We note that J is a connected generalized #z-manifold.
It is not a group, but for any two elements of J which are close
enough to H, their product in G is in J.

LEMMA 5. H is the boundary of each domain of J—H.

ProoF. Let D be any component of J— H. Since J is Ic® D is open.
Some point A& H is a limit point of D, or else J would not be con-
nected. Let O be a neighborhood of e. Then %O contains a point
dED,thatis,h-0=d.Now b '-d=0&0.Buth*-disalsoinD.Foro& H,
and, since H is connected, H o lies in one component of J—H. Since
k-o=disin D, H-olies in D, and consequently, e-0 =0 is in D. There-
fore e is a limit point of D. Similarly, if % is any other point of H,
then the neighborhood %-O contains /-0 which is in H-o0 and there-
fore in D. Thus, % is a limit point of D, which proves the lemma.

LeMMA 6. J—H has just two components.

Proor.? By Lemma 2, it is enough to show that H does not have
three complementary domains. Suppose there were three, Dy, Dy and
D,. Let p1, P2 be points in D; and D, respectively, and let ¥;, ¥, be
neighborhoods of p;, p, such that ¥, is compact and is in D;.

¥°=p,—ps is a compact 0-dimensional cycle in Y= Y;\UY,. 4° not
~0in J—H, since p; and p; are in different components. But for any
point dy&ED,,¥'~0 in J—d,- H. For let O be a neighborhood of e not
meeting do-H, which is in Do, and let O’ be chosen so that every
compact O-cycle in O’ bounds in O. Choose d;&0'\D; and d. &0’
ﬂDz. Then d1~d2 in O. By Lemma 3, Pl'\’dl in Dl, ﬁz'\’dz in Dz.
Hence, p1~p; in D,;\UD,\JO, which does not meet d,- H.

Now, by Lemma 5.2 of [2], there is a compact cocycle v, in ¥
such that (T»-y,)~v°in J—H, where T" is the fundamental n-cycle
of J, and such that y,~0 in J—d,-H, for any do&D,. Since v, is a
compact cocycle of D;\UD,, there is an infinite n-cycle I'* of D;\UD,

2 The main outline of this proof, and to some extent that of Lemma 7, is derived
from Wilder [6, 7].
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such that KI(I'#-v,)=1. Let I'""1=FTI'*, so that I'*1 is an infinite
cycle of H.

We now choose a neighborhood M of e which does not meet ¥,
and a neighborhood N satisfying the conditions of Lemma 1. Let
dyEDyN\N. Then I'~1~d,-I'"1in M-H. Let I'"= {T}} and let the
chains involved in the homology I'*~!~d,-T"*~! be {CF}. Then
{T"} ={r?—cCp} is such that FT{"=d,-I7'. By construction,
KI(T{- %) = KI(T} %), since none of the chains C} meet 7.

{T{*} is not necessarily a Cech cycle. But, for each covering
Us, let U,g be an essential refinement (see [3, II 27: 13]) of U;
relative to cycles of J* mod (do-H)*. Then {T{"}={m,\T/%} is a
Cech cycle mod (do-H)* and KI(T"%-v%) =KI(T'}*-v,) for all {.

But now we have reached a contradiction. For v,~0 in J—d,- H,
so its Kronecker index with any infinite n-cycle of J—do-H must be
zero. But KI(I''».v,) =KI(T"*-v,)=1.

LeMMA 7. For each point h&H, r*(J—H, h)=0 for 1Sk=n—1
and r*(J—H, h) =1.

Proor. It is sufficient to consider the case Z=e. Given any neigh-
borhood V of e, choose a neighborhood Vi such that C(C(Vi- Vi)
-B(V)) does not meet Vi, where B(V) is the boundary of V. Next
choose a neighborhood V. such that if ¥°C Vs, then ¥°~0 in V. Let
Vs be such that V3 H does not contain all of V3, and, finally, let W
be such that if y*C W, then v*~0 in V3. We assert that for =1, any
v*in W—H bounds in V—H.

For let 4 and B be the two components of J—H and let y* =~%++%,
where 7% is the part of y*in 4. Since k=1, 4 is a cycle and it is suffi-
cient to show that ¥5~0 in VNA. If it does not, let O be an open set
in WNMA such that 4% is in O and O does not meet H. Then, by
Lemma 5.2 of [2], there is a compact cocycle ¥, in O such that
T* v e~v*in O, ¥a_r not ~0 in VN4, and Yn_s~0 in Vs. Let T'n—*
be an infinite ¢ycle of VMA such that KI(T'" %, ) =1.

In order to apply an argument similar to that of the preceding
lemma, we choose a point of B in the following fashion. Let ¢ be a
point of B in V, and not in (°(V3-H). By the choice of V3, there is a
continuum K in V; which contains both ¢ and e. Let M be a neigh-
borhood of e such that M- H does not meet 0. Choose N by Lemma 1
and so that N-K is in V3. N-K —H is an open subset of J and hence
is locally connected. Consequently, each component of N-K—H is
also open. Let C be that component which contains ¢. Since C is
open and N-K is connected, some point % in H must be a limit
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point of C. & is in V3, since N-K is in Vi, and therefore D=C-k™!,
containing d =chk™1, is an open connected subset of B and ¢ is a limit
point of D. Also, since ¢ is not in Vj- H, neither is d.

From N-D and N itself a simple chain of regions running from e to
d can be extracted, each element of the chain being a translation of V.

Returning now to I'*%, let I'*~*~! be the part of FI'*~* on H, so
that I'»*1 is a cycle of H mod X, where X =VNC(H— V). Using
the simple chain above, we have I'"~*=1~d-T'"»~*-1in M-D. Let the
chains of this homology be {C}~*}. Then I't"*—C}™%, for each ¢, is,
by the choice of V3, an infinite cycle of V3. Also, by the choice of M,
no C{™* meets O, so KI((TF*~Cr™ 4i_p) =KI{T{* 9%, =1 for
each §'

Now we can proceed to the same contradiction we reached in the
previous lemma, since y,—»~0 in V; so its Kronecker index with any
infinite cycle of V3 is zero. This disposes of the case k=1.

For k=0, let ¥° be based on a pair of points, one in WA and the
other in WNB. The proof used above applies to show that any «°
in W—H is homologous in V' —H to a multiple of °.

LEMMA 8. For each point b of H, ri(h) =0 for k<n—1and r,—1(k) =1.

This is an immediate consequence of Theorem 6.2 of [2] and
Lemma 7.

LEMMA 9. H s lcv 1.

Proor. Given a neighborhood V of e, choose Vi in V such that
any y**! on V; bounds in V. Choose WC V; by Lemma 7 so that
any v* in ANW bounds in ANV, and similarly for B. We assert
that any y* in WNH bounds on VNH.

To show this it is enough to show that for any neighborhood O of
e, Y*~0 in (O-H)NV. In turn, to prove this it is sufficient to show
that given any such v* and O, and given any covering U, then there
is a refinement U, such that riys~0 in (0-H)N7V.

By Lemma 1 we can choose a point a €4 MO such that y*~a-y*in
O-(WNH) and we can choose a similar point b in BMNO. By the
choice of W, a-y*~0in AN V3, and similarly for &-v*. Thus, we have
families of chains {C3t'} and {Cit'} in O-(WNH), { D'} in AN,
and {D}t'} in BNV, such that

k+1 k1 2 k
FCoyp = a- 'Yr - ’Yr, FCyyp = by — 75
B+l k1 k
FD,, &t =a 'y;, FDb N b")'g-.

Hence, for each §, Dit'— Cit'4-CiE'— Dt is a cycle 8! on Uy in
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V1. There is a refinement U of U, such that 7d:+! is the coordinate
of a Cech cycle, §*+! on V;. By the choice of V3, 8¥+'~0 in V, so
there is a chain E**2 on U; such that

FE™ = mp, "

Let E¥2=E:2 1 Fi*2 where E¥*? is the part of E¥+2 on B. Now

FE,” — #,D.5 = — Ci' + Cily — Dis — FE,™.
The chain on the right-hand side is in O-B while that on the left is
on A. Hence, since ANB=H, Et'=FE?—mDit! is in 0-H
and, of course, in V. But
F(— E™) - F(r;D’:rz) = ma-ve.
Hence, 7 vi~0 in (O-H)N\V. But a-yi~+% in 0-(WNH), so
myys~0in (O-H)NV.

At this point, we have shown, by Lemmas 8 and 9, that H has the
local properties of a generalized manifold. To complete the proof it
only remains to show that H is orientable, that is, that it carries an
(n—1)-cycle which is not carried by any proper closed subset of H.

By Lemma 8, there are neighborhoods O; and O; of e such that
there is an (#—1)-cycle mod H —O; which does not bound mod H — O,.
By group translation, every point of H has associated with it such a
non-bounding relative (n—1)-cycle. Now an argument due to Smith
[5] shows that we can carry through in the present situation the
proof of Theorem 7.1 of [1] to obtain the desired (z—1)-cycle.

In conclusion, we point out that by restricting G, we can lighten
the hypothesis on H.

THEOREM. Let G be a locally compact separable metric topological
group which is also an orientable n-dimensional generalized manifold.
Let H be a closed connected (n—1)-dimensional subgroup. Then H is an
orientable generalized manifold if any one of the following conditions is
satisfied:

(1) H separates some open set of G.

(2) For some open set O of H, there is a nonbounding (n—1)-cycle of
H mod H—O.

(3) G islocally euclidean.

The Pontrjagin duality theorem for case (3) and Theorem 6.5 of
|2] for case (2) show that both (3) and (2) imply (1). Now the proof
of Lemma 1 of [4] shows that (1) yields a neighborhood of H which
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is separated by H, that is, our Lemma 4. Since this is the only place
in our proof where the original hypothesis on H is used, the rest of
the proof can remain unchanged.

In case (3), if dim G =3, we have Montgomery’s theorem, for any
2-dimensional generalized manifold is locally euclidean [8].
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