TOPOLOGICAL GROUPS AND GENERALIZED MANIFOLDS

EDWARD G. BEGLE

In a recent paper [4],¹ Montgomery showed that in a locally euclidean 3-dimensional group, any 2-dimensional closed subgroup is also locally euclidean. In this note we prove an analogous result for higher dimensions and more general spaces.

THEOREM. Let G be a locally compact space which is both a topological group and an n-dimensional orientable generalized manifold. Let H be a closed connected (n-1)-dimensional subgroup. Then, if H carries a nonbounding (n-1)-cycle, H is also an orientable generalized manifold.

The terminology used in the statement of this theorem, and in what follows, is that of our two previous papers on generalized manifolds [1, 2], and we assume that the reader is familiar with them.

We make, however, one change. We find it convenient to define infinite cycles in the following way: We add to G an ideal point, g^+ , taking as neighborhoods of g^+ those open subsets of G whose closures are not compact. Then $G^+ = G \cup g^+$ is compact. Now an infinite cycle of G is defined to be a relative cycle of G^+ mod g^+ . That this definition of infinite cycles is equivalent to the one used in [2] follows from Theorem 1.1 of [2].

LEMMA 1. Given any neighborhood M of the unit element e of G, there is a neighborhood N of E such that for any infinite cycle Γ^k on H, $0 \le k \le n-1$, and for any $g \in N$, $\Gamma^k \sim g \cdot \Gamma^k$ on $M \cdot H$.

PROOF. Let $M_{n-1} \subset M$ have a compact closure. Choose a sequence

$$M_{n-1} \supset N_{n-1} \supset M_{n-2} \supset \cdots \supset M_0 \supset N_0$$

such that N_i is obtained from M_i by the local connectedness of G in dimension i, and such that $M_i \cdot M_i \subset N_{i+1}$. Finally let N be such that $N \cdot N \subset N_0$.

Now let $g \in N$. To show that $\Gamma^k \sim g \cdot \Gamma^k$ on $M \cdot H$, it is sufficient to show that the coordinates of these cycles on the nerve of any covering U of G are homologous on $(M \cdot H)^+$. To this end, given a covering U, choose U' < *U. Let X be the complement of the union of those sets of U' which contain g^+ . Then X is a compact set. Let $X_1 = \overline{M}_0 \cdot X$ and $X_i = \overline{M}_{i-1} \cdot X_{i-1}$. Each X_i is a compact set.

Received by the editors December 10, 1947.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

A finite number of translations of N_{n-1} cover X_n , say

$$g_{1,n-1} \cdot N_{n-1}, g_{2,n-1} \cdot N_{n-1}, \cdot \cdot \cdot, g_{k,n-1} \cdot N_{n-1}.$$

For each i, let $U_{i,n-1}$ be a refinement of U' such that any (n-1)-cycle on $U_{i,n-1}$ in $g_{i,n-1} \cdot N_{n-1}$ has its projection to U' bounding in $g_{i,n-1} \cdot M_{n-1}$. Let U_{n-1} be a common refinement of these coverings.

Next, a finite number of translations of N_{n-2} cover X_{n-1} . From these we obtain a refinement U_{n-2} of U_{n-1} by the procedure above, this time using the local connectedness of G in dimension n-2. Proceeding in this fashion for another n-2 steps we arrive at a covering U_0 .

Let Γ_0^k and $g \cdot \Gamma_0^k$ be the coordinates of Γ^k and $g \cdot \Gamma^k$ on U_0 . We assert that $\pi \Gamma_0^k$ and $\pi g \cdot \Gamma_0^k$ are homologous on U on $(M \cdot H)^+$, where π is the projection from U_0 to U. Let Δ be the cartesian product of $|\Gamma_0^k|$ with a unit segment, subdivided simplicially in such a way that all the vertices of Δ are in the base, $\Delta_0 = |\Gamma_0^k| \times 0$, and in the top, $\Delta_1 = |\Gamma_0^k| \times 1$. Let $\overline{\Delta}$ be the closed subcomplex of Δ generated by those simplexes of Γ_0^k which are on X. We define a partial realization τ' of Δ on U_0 by letting $\tau'\sigma = \sigma$ if $\sigma \in \Delta_0$ and $\tau'\sigma = g \cdot \sigma$ if $\sigma \in \Delta_1$.

au' induces a partial realization $\overline{\tau}'$ of $\overline{\Delta}$ on U_0 . In view of the choices of the coverings made above, the usual argument shows that there is a full realization $\overline{\tau}$ of $\overline{\Delta}$ on U', where, if π_0 is the projection from U_0 to U', $\overline{\tau} = \pi_0 \overline{\tau}'$ whenever the latter is defined. Also, $\overline{\tau}\overline{\Delta}$ is on $M_{n-1} \cdot H$.

We can now define a full realization of Δ on U in the following fashion. The projection π_0 can be so chosen that a vertex of U_0 not on X is projected into a vertex of U' which contains g^+ . Since $U' <^* U$, a projection π of U' to U can be so chosen that any simplex of U_0 which has a vertex not on X is projected by $\pi\pi_0$ into the simplex of U consisting of those vertices of U which contain g^+ . Any cycle in this simplex bounds in this simplex, so $\pi\pi_0\tau'(\Delta-\overline{\Delta})$ can be filled in to make a full realization of $\Delta-\overline{\Delta}$ on U, and this together with $\pi\bar{\tau}\overline{\Delta}$ makes a full realization τ of Δ on U. Since $\Gamma_0^k \times 0 \sim \Gamma_0^k \times 1$ on Δ , $\tau(\Gamma_0^k \times 0) \sim \tau(\Gamma_0^k \times 1)$ on U. But $\tau(\Gamma_0^k \times 0) = \pi\pi_0\Gamma_0^k$ and $\tau(\Gamma_0^k \times 1) = \pi\pi_0 g$ Γ_0^k . Since it is easily seen from the construction that this homology takes place on $(M \cdot H)^+$, the proof is complete.

Clearly the same proof suffices for the following lemma.

LEMMA 2. Given any neighborhood M of e in G, there is a neighborhood N of e such that for any closed subset X of H and any cycle Γ^k of H mod X, $\Gamma^k \sim g \cdot \Gamma^k$ in $M \cdot H$ mod $M \cdot X$, whenever $g \in N$.

LEMMA 3. If D is an open connected subset of G, then any two points

of D lie on a compact connected subset of D.

PROOF. Since G is lc^0 , any neighborhood O of a point d of D contains a neighborhood W of d with $W \subset D$ such that any point $w \in W$ lies, together with d, on a compact continuum in $O \cap D$. Now let D_1 be the set of all points of D which can be joined to a fixed point $d_1 \in D$ by compact continua. Then, by the above, D_1 is both open and closed in D. Hence, since D is connected, D_1 is all of D.

LEMMA 4. If O is a neighborhood of e such that $C(O \cdot H)$ (where C means closure) is not all of G, then $O \cdot H - H$ has at least two components.

PROOF. Let g be a point of $G - \mathcal{C}(O \cdot H)$, and let K be a compact connected set which contains both e and g. Let N be a neighborhood of e in O, chosen by Lemma 1. A finite number of translations of N cover K, and from these we may choose a sequence

$$e \in N, N_1, N_2, \cdots, N_k \ni g$$

where $N_i = g_i \cdot N$ and such that $N_i \cap N_{i+1} \neq 0$. Let \bar{g}_i be a point of $N_i \cap N_{i+1}$. Now, $\bar{g}_{i-1} \in g_i \cdot N$, so $g_i^{-1} \cdot \bar{g}_{i-1} \in N$. Hence, by Lemma 1,

$$\Gamma^{n-1} \sim \varrho_i^{-1} \cdot \bar{\varrho}_{i-1} \cdot \Gamma^{n-1}$$

where Γ^{n-1} is a nonbounding cycle on H. Therefore,

$$g_i \cdot \Gamma^{n-1} \sim \bar{g}_{i-1} \cdot \Gamma^{n-1}$$
.

Similarly, $\bar{g}_i \in g_i \cdot N$, and

$$g_i \cdot \Gamma^{n-1} \sim \bar{g}_i \cdot \Gamma^{n-1}$$
.

Thus, we have

$$\Gamma^{n-1} \sim g \cdot \Gamma^{n-1}$$
.

Now $\Gamma^{n-1}-g\cdot\Gamma^{n-1}$ is a cycle of $H\cup(G-O\cdot H)$ and $\Gamma^{n-1}-g\cdot\Gamma^{n-1}\sim 0$ in G. Hence [3, p. 227 (14.2)] there is in G a cycle Γ^n mod $(H\cup(G-O\cdot H))$ such that $F\Gamma^n=\Gamma^{n-1}-g\cdot\Gamma^{n-1}$. Let $\overline{\Gamma}^n$ be the fundamental n-cycle of G, and let $\overline{\Gamma}^n_1$ be the part of $\overline{\Gamma}^n$ on $G-(O\cdot H-H)$. Let $\overline{\Gamma}^n_2=\overline{\Gamma}^n-\overline{\Gamma}^n_1$.

In a neighborhood of any point of $O \cdot H - H$, Γ^n is homologous to some multiple of $\overline{\Gamma}^n$. If we assume that $O \cdot H - H$ is connected, then (cf. [1, p. 569]) this multiple is the same for all points of $O \cdot H - H$, that is, $r\Gamma^n = \overline{\Gamma}_2^n$.

By definition, $\overline{\Gamma}_1^n$ is on $H \cup (G - O \cdot H)$. Since H and $G - O \cdot H$ are closed and disjoint, and since dim H < n, $\overline{\Gamma}_1^n$ must be on $G - O \cdot H$, so $F\overline{\Gamma}_1^n$ is also on $G - O \cdot H$.

But, from $0 = F\overline{\Gamma}^n = F(\overline{\Gamma}_1^n + \overline{\Gamma}_2^n)$, we have

$$F\overline{\Gamma}_1^n = -F(\overline{\Gamma}_2^n) = -F(r\Gamma^n)$$

= $-r(\Gamma^{n-1} - g \cdot \Gamma^{n-1}).$

This is not on $G-O\cdot H$, since Γ^{n-1} is on H. Thus, the assumption that $O\cdot H-H$ has only one component leads to a contradiction.

We now choose a fixed connected neighborhood of e, satisfying the condition of Lemma 4, and denote by J the product of H by this neighborhood. We note that J is a connected generalized n-manifold. It is not a group, but for any two elements of J which are close enough to H, their product in G is in J.

LEMMA 5. H is the boundary of each domain of J-H.

PROOF. Let D be any component of J-H. Since J is lc^0 , D is open. Some point $h \in H$ is a limit point of D, or else J would not be connected. Let O be a neighborhood of e. Then $h \cdot O$ contains a point $d \in D$, that is, $h \cdot o = d$. Now $h^{-1} \cdot d = o \in O$. But $h^{-1} \cdot d$ is also in D. For $o \notin H$, and, since H is connected, $H \cdot o$ lies in one component of J-H. Since $h \cdot o = d$ is in D, $H \cdot o$ lies in D, and consequently, $e \cdot o = o$ is in D. Therefore e is a limit point of D. Similarly, if \bar{h} is any other point of H, then the neighborhood $\bar{h} \cdot O$ contains $\bar{h} \cdot o$ which is in $H \cdot o$ and therefore in D. Thus, \bar{h} is a limit point of D, which proves the lemma.

LEMMA 6. J-H has just two components.

PROOF.² By Lemma 2, it is enough to show that H does not have three complementary domains. Suppose there were three, D_0 , D_1 and D_2 . Let p_1 , p_2 be points in D_1 and D_2 respectively, and let Y_1 , Y_2 be neighborhoods of p_1 , p_2 such that \overline{Y}_i is compact and is in D_i .

 $\gamma^0 = p_1 - p_2$ is a compact 0-dimensional cycle in $Y = Y_1 \cup Y_2$. γ^0 not ~ 0 in J - H, since p_1 and p_2 are in different components. But for any point $d_0 \in D_0, \gamma^0 \sim 0$ in $J - d_0 \cdot H$. For let O be a neighborhood of e not meeting $d_0 \cdot H$, which is in D_0 , and let O' be chosen so that every compact 0-cycle in O' bounds in O. Choose $d_1 \in O' \cap D_1$ and $d_2 \in O' \cap D_2$. Then $d_1 \sim d_2$ in O. By Lemma 3, $p_1 \sim d_1$ in D_1 , $p_2 \sim d_2$ in D_2 . Hence, $p_1 \sim p_2$ in $D_1 \cup D_2 \cup O$, which does not meet $d_0 \cdot H$.

Now, by Lemma 5.2 of [2], there is a compact cocycle γ_n in Y such that $(\overline{\Gamma}^n \cdot \gamma_n) \sim \gamma^0$ in J - H, where $\overline{\Gamma}^n$ is the fundamental n-cycle of J, and such that $\gamma_n \sim 0$ in $J - d_0 \cdot H$, for any $d_0 \in D_0$. Since γ_n is a compact cocycle of $D_1 \cup D_2$, there is an infinite n-cycle Γ^n of $D_1 \cup D_2$

² The main outline of this proof, and to some extent that of Lemma 7, is derived from Wilder [6, 7].

such that $KI(\Gamma^n \cdot \gamma_n) = 1$. Let $\Gamma^{n-1} = F\Gamma^n$, so that Γ^{n-1} is an infinite cycle of H.

We now choose a neighborhood M of e which does not meet \overline{Y} , and a neighborhood N satisfying the conditions of Lemma 1. Let $d_0 \in D_0 \cap N$. Then $\Gamma^{n-1} \sim d_0 \cdot \Gamma^{n-1}$ in $M \cdot H$. Let $\Gamma^n = \{\Gamma_{\mathfrak{f}}^n\}$ and let the chains involved in the homology $\Gamma^{n-1} \sim d_0 \cdot \Gamma^{n-1}$ be $\{C_{\mathfrak{f}}^n\}$. Then $\{\Gamma_{\mathfrak{f}}^m\} = \{\Gamma_{\mathfrak{f}}^n - C_{\mathfrak{f}}^n\}$ is such that $F\Gamma_{\mathfrak{f}}^m = d_0 \cdot \Gamma_{\mathfrak{f}}^{n-1}$. By construction, $KI(\Gamma_{\mathfrak{f}}^m \cdot \gamma_{\mathfrak{f}}^n) = KI(\Gamma_{\mathfrak{f}}^n \cdot \gamma_{\mathfrak{f}}^n)$, since none of the chains $C_{\mathfrak{f}}^n$ meet \overline{Y} .

 $\{\Gamma_{\mathbf{f}}^{'n}\}$ is not necessarily a Čech cycle. But, for each covering $U_{\mathbf{f}}$, let $U_{\rho(\mathbf{f})}$ be an essential refinement (see [3, II 27: 13]) of $U_{\mathbf{f}}$ relative to cycles of J^+ mod $(d_0 \cdot H)^+$. Then $\{\Gamma_{\mathbf{f}}^{\prime m}\} = \{\pi_{\rho(\mathbf{f})}^{\mathbf{f}}\Gamma_{\rho(\mathbf{f})}^{\prime n}\}$ is a Čech cycle mod $(d_0 \cdot H)^+$ and $\mathrm{KI}(\Gamma_{\mathbf{f}}^{\prime m}, \gamma_n^{\mathbf{f}}) = \mathrm{KI}(\Gamma_{\mathbf{f}}^{\prime m}, \gamma_n)$ for all ξ .

But now we have reached a contradiction. For $\gamma_n \sim 0$ in $J - d_0 \cdot H$, so its Kronecker index with any infinite *n*-cycle of $J - d_0 \cdot H$ must be zero. But $KI(\Gamma''^n \cdot \gamma_n) = KI(\Gamma^n \cdot \gamma_n) = 1$.

LEMMA 7. For each point $h \in H$, $r^k(J-H, h) = 0$ for $1 \le k \le n-1$ and $r^0(J-H, h) = 1$.

PROOF. It is sufficient to consider the case h=e. Given any neighborhood V of e, choose a neighborhood V_1 such that $\mathcal{C}(\mathcal{C}(V_1 \cdot V_1) \cdot B(V))$ does not meet \overline{V}_1 , where B(V) is the boundary of V. Next choose a neighborhood V_2 such that if $\gamma^0 \subset V_2$, then $\gamma^0 \sim 0$ in V_1 . Let V_3 be such that $\overline{V}_3 \cdot H$ does not contain all of V_2 , and, finally, let W be such that if $\gamma^k \subset W$, then $\gamma^k \sim 0$ in V_3 . We assert that for $k \geq 1$, any γ^k in W-H bounds in V-H.

For let A and B be the two components of J-H and let $\gamma^k = \gamma_a^k + \gamma_b^k$, where γ_a^k is the part of γ^k in A. Since $k \ge 1$, γ_a^k is a cycle and it is sufficient to show that $\gamma_a^k \sim 0$ in $V \cap A$. If it does not, let O be an open set in $W \cap A$ such that γ^k is in O and O does not meet H. Then, by Lemma 5.2 of [2], there is a compact cocycle γ_{n-k} in O such that $\overline{\Gamma}^n \cdot \gamma_{n-k} \sim \gamma^k$ in O, γ_{n-k} not ~ 0 in $V \cap A$, and $\gamma_{n-k} \sim 0$ in V_3 . Let Γ^{n-k} be an infinite cycle of $V \cap A$ such that $KI(\Gamma^{n-k} \cdot \gamma_{n-k}) = 1$.

In order to apply an argument similar to that of the preceding lemma, we choose a point of B in the following fashion. Let c be a point of B in V_2 and not in $\mathcal{C}(V_3 \cdot H)$. By the choice of V_2 , there is a continuum K in V_1 which contains both c and e. Let M be a neighborhood of e such that $M \cdot H$ does not meet \overline{O} . Choose N by Lemma 1 and so that $N \cdot K$ is in V_1 . $N \cdot K - H$ is an open subset of J and hence is locally connected. Consequently, each component of $N \cdot K - H$ is also open. Let C be that component which contains c. Since C is open and $N \cdot K$ is connected, some point h in H must be a limit

point of C. h is in \overline{V}_1 , since $N \cdot K$ is in V_1 , and therefore $D = C \cdot h^{-1}$, containing $d = ch^{-1}$, is an open connected subset of B and e is a limit point of D. Also, since c is not in $V_3 \cdot H$, neither is d.

From $N \cdot D$ and N itself a simple chain of regions running from e to d can be extracted, each element of the chain being a translation of N.

Returning now to Γ^{n-k} , let Γ^{n-k-1} be the part of $F\Gamma^{n-k}$ on H, so that Γ^{n-k-1} is a cycle of H mod X, where $X = \overline{V} \cap \mathcal{C}(H-V)$. Using the simple chain above, we have $\Gamma^{n-k-1} \sim d \cdot \Gamma^{n-k-1}$ in $M \cdot D$. Let the chains of this homology be $\{C_{\xi}^{n-k}\}$. Then $\Gamma_{\xi}^{n-k} - C_{\xi}^{n-k}$, for each ζ , is, by the choice of V_1 , an infinite cycle of V_3 . Also, by the choice of M, no C_{ξ}^{n-k} meets \overline{O} , so $\mathrm{KI}((\Gamma_{\xi}^{n-k} - C_{\xi}^{n-k}) \cdot \gamma_{n-k}^{\xi}) = \mathrm{KI}(\Gamma_{\xi}^{n-k} \cdot \gamma_{n-k}^{\xi}) = 1$ for each ζ .

Now we can proceed to the same contradiction we reached in the previous lemma, since $\gamma_{n-k} \sim 0$ in V_3 so its Kronecker index with any infinite cycle of V_3 is zero. This disposes of the case $k \ge 1$.

For k=0, let $\bar{\gamma}^0$ be based on a pair of points, one in $W \cap A$ and the other in $W \cap B$. The proof used above applies to show that any γ^0 in W-H is homologous in V-H to a multiple of $\bar{\gamma}^0$.

LEMMA 8. For each point h of H,
$$r_k(h) = 0$$
 for $k < n-1$ and $r_{n-1}(h) = 1$.

This is an immediate consequence of Theorem 6.2 of [2] and Lemma 7.

LEMMA 9. H is lc^{n-1} .

PROOF. Given a neighborhood V of e, choose V_1 in V such that any γ^{k+1} on \overline{V}_1 bounds in V. Choose $W \subset V_1$ by Lemma 7 so that any γ^k in $A \cap W$ bounds in $A \cap V_1$ and similarly for B. We assert that any γ^k in $W \cap H$ bounds on $\overline{V} \cap H$.

To show this it is enough to show that for any neighborhood O of e, $\gamma^k \sim 0$ in $(O \cdot H) \cap \overline{V}$. In turn, to prove this it is sufficient to show that given any such γ^k and O, and given any covering U_1 , then there is a refinement U_2 such that $\pi_2^1 \gamma_2^k \sim 0$ in $(O \cdot H) \cap \overline{V}$.

By Lemma 1 we can choose a point $a \in A \cap O$ such that $\gamma^k \sim a \cdot \gamma^k$ in $O \cdot (W \cap H)$ and we can choose a similar point b in $B \cap O$. By the choice of W, $a \cdot \gamma^k \sim 0$ in $A \cap V_1$, and similarly for $b \cdot \gamma^k$. Thus, we have families of chains $\left\{C_{a,s}^{k+1}\right\}$ and $\left\{C_{b,s}^{k+1}\right\}$ in $O \cdot (W \cap H)$, $\left\{D_{a,s}^{k+1}\right\}$ in $A \cap V_1$ and $\left\{D_{b,s}^{k+1}\right\}$ in $B \cap V_1$ such that

$$\begin{split} FC_{a,\mathfrak{f}}^{k+1} &= a \cdot \gamma_{\mathfrak{f}}^{k} - \gamma_{\mathfrak{f}}^{k}, & FC_{b,\mathfrak{f}}^{k+1} &= b \cdot \gamma_{\mathfrak{f}}^{k} - \gamma_{\mathfrak{f}}^{k}, \\ FD_{a,\mathfrak{f}}^{k+1} &= a \cdot \gamma_{\mathfrak{f}}^{k}, & FD_{b,\mathfrak{f}}^{k+1} &= b \cdot \gamma_{\mathfrak{f}}^{k}. \end{split}$$

Hence, for each ζ , $D_{a,\zeta}^{k+1} - C_{a,\zeta}^{k+1} + C_{b,\zeta}^{k+1} - D_{b,\zeta}^{k+1}$ is a cycle δ_{ζ}^{k+1} on U_{ζ} in

 V_1 . There is a refinement U_2 of U_1 such that $\pi_2^1 \delta_2^{k+1}$ is the coordinate of a Čech cycle, δ^{k+1} on \overline{V}_1 . By the choice of V_1 , $\delta^{k+1} \sim 0$ in V, so there is a chain E^{k+2} on U_1 such that

$$FE^{k+2} = \pi_2^1 \delta_2^{k+2}$$
.

Let $E^{k+2} = E_a^{k+2} + E_b^{k+2}$, where E_b^{k+2} is the part of E^{k+2} on \overline{B} . Now

$$FE_a^{k+2} - \pi_2^1 D_{a,2}^{k+1} = -C_{a,2}^{k+1} + C_{b,2}^{k+1} - D_{b,2}^{k+1} - FE_b^{k+2}.$$

The chain on the right-hand side is in $O \cdot B$ while that on the left is on \overline{A} . Hence, since $\overline{A} \cap \overline{B} = H$, $E^{k+1} = FE_a^{k+2} - \pi_2^1 D_{a,2}^{k+1}$ is in $O \cdot H$ and, of course, in V. But

$$F(-E^{k+1}) - F(\pi_2^1 D_{a,2}^{k+1}) = \pi_2^1 a \cdot \gamma_a^k$$

Hence, $\pi_2^1 a \cdot \gamma_2^k \sim 0$ in $(O \cdot H) \cap V$. But $a \cdot \gamma_2^k \sim \gamma_2^k$ in $O \cdot (W \cap H)$, so $\pi_2^1 \gamma_2^k \sim 0$ in $(O \cdot H) \cap V$.

At this point, we have shown, by Lemmas 8 and 9, that H has the local properties of a generalized manifold. To complete the proof it only remains to show that H is orientable, that is, that it carries an (n-1)-cycle which is not carried by any proper closed subset of H.

By Lemma 8, there are neighborhoods O_1 and O_2 of e such that there is an (n-1)-cycle mod $H-O_1$ which does not bound mod $H-O_2$. By group translation, every point of H has associated with it such a non-bounding relative (n-1)-cycle. Now an argument due to Smith [5] shows that we can carry through in the present situation the proof of Theorem 7.1 of [1] to obtain the desired (n-1)-cycle.

In conclusion, we point out that by restricting G, we can lighten the hypothesis on H.

THEOREM. Let G be a locally compact separable metric topological group which is also an orientable n-dimensional generalized manifold. Let H be a closed connected (n-1)-dimensional subgroup. Then H is an orientable generalized manifold if any one of the following conditions is satisfied:

- (1) H separates some open set of G.
- (2) For some open set O of H, there is a nonbounding (n-1)-cycle of H mod H-O.
 - (3) G is locally euclidean.

The Pontrjagin duality theorem for case (3) and Theorem 6.5 of [2] for case (2) show that both (3) and (2) imply (1). Now the proof of Lemma 1 of [4] shows that (1) yields a neighborhood of H which

is separated by H, that is, our Lemma 4. Since this is the only place in our proof where the original hypothesis on H is used, the rest of the proof can remain unchanged.

In case (3), if dim G=3, we have Montgomery's theorem, for any 2-dimensional generalized manifold is locally euclidean [8].

BIBLIOGRAPHY

- 1. E. G. Begle, Locally connected spaces and generalized manifolds, Amer. J. Math. vol. 64 (1942) pp. 553-574.
- 2. —, Duality theorems for generalized manifolds, Amer. J. Math. vol. 67 (1945) pp. 59-70.
- 3. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, New York, 1942.
- 4. D. Montgomery, Analytic parameters in three dimensional groups, Ann. of Math. vol. 49 (1948) pp. 118-131.
- 5. P. Smith, Properties of group manifolds, Proc. Nat. Acad. Sci. U.S.A. vol. 17 (1931) pp. 674-675.
- 6. R. L. Wilder, Concerning a problem of K. Borsuk, Fund. Math. vol. 21 (1933) pp. 156-167.
 - 7. ——, On free subsets of En, Fund. Math. vol. 25 (1935) pp. 200-208.
- 8. ——, Generalized closed manifolds in n-space, Ann. of Math. vol. 35 (1934) pp. 876-903.

YALE UNIVERSITY