
THE STRUCTURE OF MINIMAL SETS 
MARIANO GARCIA AND GUSTAV A. HEDLUND 

1. Introduction. A minimal set is a topological space X acted 
on by a topological group T such that the orbit closure of every point 
in X coincides with X. If G is a relatively dense subgroup of Tt the 
orbit closure under G of a point of X may or may not coincide with 
X. In this paper the properties of the orbit closures under such a 
subgroup are studied and several of the possibilities are analyzed. 
There is displayed an example of a regularly almost periodic point 
such that not all points in the orbit closure are regularly almost 
periodic. 

2. The decomposition of a minimal set by relatively dense sub­
groups. Let X be a compact metric space and let T be an additive 
abelian topological group. Let ƒ be a continuous transformation of the 
product space XXT into X. We denote the image of the point xXt 
under ƒ by either ƒ(x, t) or fl(x). We assume that ƒ defines a trans­
formation group in that if t, sÇzT, x £ X , then 

(1) ƒ>(») = X, 

(2) ƒ•+«(*) - ƒ•(ƒ'(*)). 

It is easily shown that for fixed / in T, the transformation defined 
by x—»ƒ'(#) is a homeomorphism of X onto X. With ƒ satisfying the 
stated conditions we say that T is a transformation group acting on X. 

The subset F of X is invariant under the subset A of T if ƒ"( F) = F 
for all a in A. If G is a subgroup of T and F is a subset of X which is 
invariant under G; then F is a topological space, G is a topological 
group, and/defines a continuous transformation of the product YXG 
onto F such that (1) and (2) are satisfied for all points y in F and all 
element pairs g, h in G. Thus G is a transformation group acting on F. 

The orbit of x is the set f(x, T). If A is a subset of T, the orbit of x 
under A is the set f(x, A). 

The space X is minimal under T if for every x in Xy f(x, T) =X, 
where ƒ(x, T) denotes the closure of the set f(x, T). The subset A of 
T is relatively dense in T if there exists a compact subset C of T such 
that T—A + C. The point x of X is almost periodic under T if, cor­
responding to any neighborhood Uoî x, there exists a set A, relatively 
dense in T, such that ƒ(x, A)CU. 
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We shall assume throughout that X is minimal under T. It follows 
from a theorem of Gottschalk [l, Theorem 1, p. 762 ]x that each 
point of X is almost periodic under T. 

Let G be a relatively dense subgroup of T. It follows from another 
theorem of Gottschalk [l, Theorem 4, p. 764] that each point x of X 
is almost periodic under G. Thus the set ƒ(#, G) is invariant and 
minimal under G. If x and y are arbitrary points of X, the sets 
f(x, G) and f(yf G) are either disjoint or identical and G effects a 
decomposition of X into disjoint closed sets which are minimal under 
G. 

Let X and F be minimal sets with associated transformation groups 
T and 5, and transformations ƒ and g, respectively. The minimal sets 
Z and F will be said to be equivalent if there exists a homeomorphism 
h of X onto F and an isomorphism / between T and S such that if 
x £ I , / g r and /(/) = sGS, then 

In this case it will be said that X and Y are equivalent by virtue of the 
homeomorphism h and the isomorphism I. If the groups T and 5 hap­
pen to be identical, X and F will be said to be equivalent by virtue of the 
homeomorphism h. 

THEOREM 1. Let X be a compact metric space which is minimal under 
the transformation group T and let G be a relatively dense subgroup of T. 
Then if x and y are arbitrary points of X, there exists an element u of T 
such that fu[]{x, G)]=f(y, G) and the sets f{x, G) and f(yf G), which 
are minimal under G, are equivalent by virtue offu. 

Since G is a relatively dense subgroup of J1, there exists a compact 
set A in T such that T — A+G. Let X\ be the subset of X consisting 
of all points ƒ (s, a) such that zÇj{x, G) and a£:A. If follows from the 
compactness of ƒ(#, G) and A that X\ is compact. But if t is any ele­
ment of T, then t = a+gt with a in A and g in G, and since f°(x) 
£ƒ(#, G), we infer that f'(x) =:f[f0(x)t a]G-X\. Since the orbit of x is 
everywhere dense in X, X\ is everywhere dense in X and thus, X\ be­
ing a closed set, Xi = X. In particular, we have shown that there exists 
a point z inf(xf G) and an element u of T such that fu(z) *=y. 

The transformation fu is a homeomorphism of X onto X. If g is 
any element of G, fu[f°(z)] =*f°[fu(z)]=f°(y) and since the set/(#, G) 
is everywhere dense in f(x, G), while the set f(y, G) is everywhere 
dense in ƒ(;y, G), it follows that fu[f(x> G)]=f(y1 G). If w is any point 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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of f(x, G) and g is any element of G} then 

and f(x, G) and f(y, G) are equivalent by virtue of fu. 

THEOREM 2. The decomposition of X by G is continuous. 

Let g denote the mapping of X X G onto X defined b y / . According 
to a theorem of Gottschalk [l, Theorem 5, p. 765] it is sufficient to 
prove that g is weakly almost periodic. That is, corresponding to 
e > 0, there exists a compact set C in G such that if x is any point of 
X, every translate of C by an element of G contains an element s 
such that g(x, s) G U€(x). There exists a compact set B in T such that 
T = B + G. Let z be any point of X. Corresponding to €>0, there exists 
a ô > 0 such that if y&f(^ G) and &G#, thenf(Uô(y))CUe(f

b(y)). 
This follows from the compactness of the sets f(z, G) and B. Now g 
is weakly almost periodic on the minimal set f(z, G) and hence there 
exists a compact set C in G such that if u G ƒ (s, G) then every trans­
late C+g* of C by an element g* of G contains an element 5 such 
that g(u, s) G UÖ(U). We show that the set C satisfies the desired con­
dition with respect to every point x in X. For there exists a point u 
in f(z, G) and an element b in B such that x =fb(u). Let s be an element 
in C+g* such that f8(u)(EU8(u). But then fb(f(u))eU<(fb(u)) or 
g (x, s) G Ue(x), which is the desired result. 

3. Reductibility and regular almost periodicity. If we consider all 
possible relatively dense subgroups of T and the resulting decompo­
sitions of X, several possibilities arise. The minimal set X will be 
said to be totally minimal if there exists a point x of X such that for 
every relatively dense subgroup G of T, f(x, G) = X. It is clear that if 
this property holds for one point of X, it holds for all points of X. It 
is easy to construct examples of totally minimal sets. If X is a circle 
of circumference unity and a is a positive rational number, the rota­
tions of X about its center through integral multiples of a define a 
transformation group acting on X with T the discrete group of 
integers. It is readily verified that in this case X is a minimal set 
which is totally minimal. More generally, if X is a connected minimal 
set for which the group T is discrete, and G is a relatively dense 
subgroup of T, then, since any compact subset of a discrete group is 
finite, the number of sets in the decomposition of X by G is finite. 
Since X is connected and these sets are closed and disjoint, there can 
be only one such set, namely/(x, G), and X is totally minimal. How­
ever X can be totally disconnected and yet a totally minimal set. 
Examples of totally minimal sets for which X is the Cantor dis-
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continuum and T is the group of integers have been constructed by 
Hedlund [l , Theorem 6.4, p. 619]. 

If T is the group of real numbers with its natural topology we say 
that ƒ defines a continuous flow in X. It is possible to display examples 
of compact manifolds which are totally minimal under continuous 
flows. A continuous flow in the topological space X is said to be 
topologically mixing if corresponding to any two open subsets A and 
B of X there exists a real number r such that for \t\ >r1f

t(A)C\B ?*0. 
It is clear that if X is minimal under a continuous flow which is 
topologically mixing, then X is totally minimal. Continuous flows in 
compact three-dimensional manifolds which are minimal and topo­
logically mixing have been constructed by Hedlund ([2, p. 250]. The 
result is not stated specifically, but it is remarked that if the funda­
mental region, together with its boundary, lies interior to the unit 
circle, the horocycle flow has the property that every motion is 
transitive. Thus the horocycle flow is minimal. I t is easy to show 
that this flow is topologically mixing). These considerations suggest 
a converse problem, namely as to whether, in the case of a set which 
is minimal under a continuous flow, total minimality implies that the 
flow is topologically mixing. The authors have not been able to verify 
or disprove this conjecture. 

In contrast to the case in which X is totally minimal it may happen 
that corresponding to any e > 0 there exists a relatively dense sub­
group G of T such that if D is any one of the members of the decom­
position of X by G, diam. D<e. Generalizing a definition due to G. 
T. Whyburn [l, p. 250] we say that in this case the transformation 
group T acting on X is regularly almost periodic. I t will also be said 
in this case that the minimal set X is completely reducible. 

If the transformation group T is periodic in the sense that there 
exists a relatively dense subgroup G such that ƒ (x, G) = x for all x in 
X, then T is regularly almost periodic and the minimal set X is 
completely reducible. I t is not difficult to construct a minimal set X 
for which T is the group of integers, X is a Cantor discontinuum, and 
X is completely reducible. In such a case T cannot be periodic in the 
sense defined. 

Again generalizing a definition of Whyburn [l, p. 250] we say that 
the point x of X is regularly almost periodic with respect to T if cor­
responding to any e > 0 there exists a relatively dense subgroup G of 
T such that diam. /(x, G) <e . In this case we say that the minimal 
set X is reducible a t x and if every point of X is regularly almost 
periodic we say that X is pointwise reducible. If the minimal set X 
is completely reducible, it is clearly pointwise reducible. As to whether 
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the converse of this is true in general seems to be difficult to deter­
mine, but it is possible to show that pointwise reducibility implies 
complete reducibility if the group T is discrete. To that end we prove 
an elementary lemma. 

LEMMA 1. If T is a discrete, abelian, topological group and Gi and G2 
are relatively dense subgroups of T, then GiHG2 is a relatively dense sub­
group of T, of G% and of G2. 

The proof of this lemma follows readily from the theorem (Kurosch 
[l , p. 47]) which states that the intersection of a finite number of 
subgroups of finite index is a group of finite index and the fact tha t 
a relatively dense subgroup of T is of finite index. 

THEOREM 3. If X is a compact minimal set which is pointwise re­
ducible and T is discrete, then X is completely reducible» 

For if € > 0 and x is any point of X, there exists a relatively dense 
subgroup G of T such that diam. f(x, G)<e/2. I t follows from 
Theorem 2 that there exists a neighborhood N(x) of x such that if 
y£:N(x) then diam. f(y, G)<€. A finite number of these neighbor­
hoods cover X and let such a set be N\, iVi» • • • , Nm with correspond­
ing groups, Gi, G2, • • • , Gm. According to Lemma 1, the intersection 
G* = GiP\G2n • • • r\Gm of these relatively dense subgroups of T is a 
relatively dense subgroup of T. If z is any point of X, there exists an 
integer i such that zÇzNi and then we have diam. f(z, G*)^diam. 
ƒ(z, Gi) < e. I t follows that X is completely reducible. 

If the transformation group T acting on X is regularly almost 
periodic it is almost periodic and hence the family T is equi-uni-
formly continuous (cf. Gottschalk [3, Theorem 2, p. 635]). 

THEOREM 4. If X is compact and minimal under the equi-uniformly 
continuous transformation group T, and if X is reducible at one point, 
then X is completely reducible. 

Since the group T is equi-uniformly continuous, corresponding to 
€ > 0 there exists a S > 0 such that d(x, y)<8 implies d[f*(x), f*(y)] 
<e/2 for all t in T. If % is the point at which X is reducible, there 
exists a relatively dense subgroup G of T such that diam. f(x, G) <ô . 
But then if y^f'ix) is any point in the orbit of x, it follows that 
ƒ(?. G) =ƒ[ƒ<(*), G] ==ƒ<[ƒ(*, G)]and hence diam. f(y, G)j£e/2. In 
view of Theorem 2, we see that if x is any point of X, diam. f(x, G) < e. 
The proof of the theorem is complete. 

The compact set X, minimal under the transformation group T, 
will be said to be O-reducible if corresponding to 5 > 0 there exists a 
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relatively dense subgroup G of T and a point x of X such that diam. 
ƒ(#, G) <S. If X is a O-reducible minimal set, each point of X will be 
said to be isochronous. 

THEOREM 5. A necessary and sufficient condition that yÇzX be iso­
chronous is that corresponding to 8>0 there exists a relatively dense 
subgroup G of T and an element t of T such that diam. J(yf t+G) <§. 

Since ƒ(y, t+G)=f[ft(y)1 G], it is clear that the condition is suffi­
cient. To prove the necessity, suppose that y is isochronous. Then 
corresponding to S > 0 there exists a relatively dense subgroup G of T 
and a point x of X such that diam. f(xf G)<d/2. It follows from 
Theorem 2 that there exists a neighborhood N(x) of x such that 
zÇzN(x) implies diam. f(z, G)<ö. But the orbit of y is everywhere 
dense in X and thus there exists a / in T such that f'(y)ÇzN(x). We 
now have diam. f(y, t+G) =diam. ƒ [fl(y), G]<ô and the proof of the 
theorem is complete. 

THEOREM 6. If the compact set X is minimal under T and O-reducible, 
there exists a point of X at which X is reducible. 

We show first that if y is any point of X and Ut(y) is any e-neigh-
borhood of y} there exists a point z in Ue(y) and a relatively dense sub­
group G of T such that ƒ (z, G) C U^iy). Since ƒ is weakly almost peri­
odic, corresponding to e > 0, there exists a compact set A in T such 
that if v is any point of X} each translate of A contains an element / 
for which f(v, t)ÇE.U€/2(y). Since X is minimal, there exists an s in T 
such that / ' W G ^ W . It follows that the set A—s contains an 
element t = a—s, atEA, such that ƒ'[ƒ*(»)]£U€/2{fs(v)). But then 
fa(v)eUe/2\f(v)]CU<(y). Thus f[Ut(y), -A]=X. Since the set A is 
compact, there exists a ô > 0 such that if u and v are any points of X 
dit distance apart less than ô and a is any element of -4, then d[fa(u), 
fa(v)]<e/2. Since X is 0-reducible, there exists a point % in X and a 
relatively dense subgroup G of T such that diam. f(x, G) <8. Now let 
a be any element of A such that fa(x)£U€(y). But then diam. 
fa\f(x, G)] =diam. ƒ[ƒ*(£), G] <* and if we let fa(x) =0, we have the 
first of our desired results. 

Now let €i>€2> • • • be a sequence of real numbers with 
limWH.0Oen = 0. Let Ui be a sphere in X with radius €1. It follows from 
the first part of the proof that there exists a point Xi in Ui and a 
relatively dense subgroup d of T such that J(xi, Gi) C E/i. From 
Theorem 2 we infer the existence of a sphere Vi with center #i such 
that for every y in Vi it is true that ƒ(y, Gi) C Ui. In particular it fol­
lows that V1C.U1. Now let U2 be a sphere of radius €2 in Fi. By a 
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repetition of the argument just given, there exists a point #2, a sphere 
V2 with center x2, and a relatively dense subgroup G2 of T such that 
T ^ C t ^ C ^ i and if 2EF2 then ƒ(2, G2)C^2. Continuing this process 
we obtain a sequence F O ^ D • • • of spheres such that the radius 
of Vi is less than et-, i= 1, 2, • • - , and a sequence of relatively dense 
subgroups Giy G2, • • • of T such that if Xi is any point of Vi then 
diam. J(x», Gt)<€t-. Since T\- is compact, there must exist a point 
#*E0«°li Vi. Now X is reducible at x* and the proof of the theorem is 
complete. 

COROLLARY 6.1. If X is compact and minimal under the equi-uni-
formly continuous transformation group T and if X is 0-reducible, then 
X is completely reducible. 

If the group T is discrete it is possible to add several results which 
are not necessarily true in the general case. 

THEOREM 7. If X is a compact set which is minimal under the discrete 
transformation group T and G is a relatively dense subgroup of T then : 

(a) If x is regularly almost periodic under T, x, considered as in 
f(x, G) acted on by Gt is regularly almost periodic under G\ 

(b) If x is isochronous under T, x, considered as in ƒ(#, G) acted on 
by G, is isochronous under G. 

Statement (a) of the theorem is a simple application of Lemma 1. 
To prove (b) suppose that x is isochronous under T. I t follows from 

Theorem 6 that there exists a point y of X which is regularly almost 
periodic under T. We infer from (a) that y, considered as in f(y, G) 
acted on by G, is regularly almost periodic under G. But according 
to Theorem 1, the sets ƒ(x, G) and J(y, G) are equivalent and there 
must be a point of ƒ(#, G) which is regularly almost periodic under G. 
This implies that x, considered as in ƒ(#, G) acted on by Gt is iso­
chronous under G. 

4. An isochronous point which is not regularly almost periodic. Let 
5 be the space consisting of the symbols a and b and let I denote 
the ordered set • • • , — 1, 0, 1, 2, • • • of all integers. Let X be the 
set of all mappings from I into S. If x and y are points of X, x(n) de­
noting the image of n in 5 under the mapping #, y(n) denoting the 
image of n in S under the mapping y, we define the distance d(x, y) 
between x and y as follows: 

d(xy y) = 0 if x(n) = y{n) for all n in jf, 

d(x, y) = 1 if *(0) * y(0), 
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d(x, y) = (k + 2)-1 if %(n) « y(n), n = 0, ± 1, • • • , ± k, 

and either x{-- k — 1) 5^ y(—k — 1) or x(k + 1) 7* ;y(& + 1). 

I t is easily shown that this metric satisfies the usual metric axioms 
and that the metric space X thus defined is compact, perfect and 
totally disconnected (cf. Morse and Hedlund [l , pp. 819-820]). Thus 
X is a Cantor discontinuum. 

Let x be any point of X and let x(n) denote the image of n in S 
under the mapping x. If to the integer n we let correspond x(n + l) 
there is defined a mapping of I into S and we denote the point of x 
thereby defined by y. I t is easy to show that the mapping x—»j is a 
homeomorphism H of X onto X. This homeomorphism H and its 
integral powers define a transformation group T acting on X and 

r=/. 
We define a sequence of points of X. It will be convenient to term 

the symbol b the dual of a and the symbol a the dual of £. If c stands 
for either a or &, we denote its dual by c. Now let ao be the point of X 
defined by the mapping 

ao(n) = a, n = 0, ± 1 , ± 2 , • • • . 

Proceeding inductively and assuming that ao, ai, • • • , aw_i have been 
defined, we define am by the mapping 

(aw_i(w), n 7* k2™, k = 0, ± 1, • • • , 

Uw_i(n), n = A2m, ft = 0, ± l f | - • • . 

The point x of X is periodic if there exists an co in I, COJ^O, such 
that x(n+o))—x(n) for all n in J. In this case we say that co is a 
period of x. If x is periodic, there exists a primitive period co of x in 
the sense that u(E:I, co>0, and any period of x is an integral multiple 
of co. We then say that this primitive period is the period of x. Clearly 
x is periodic under T if and only if x is periodic in the sense just de­
fined. 

LEMMA 2. am is periodic with the period 2m. 

We prove this by induction. I t follows immediately from its defini­
tion that «o is periodic with the period 1. Let us suppose that for 
O ^ i ^ m — 1 , ai is periodic with the period 2\ If ft9ék2m

i k integral, 
Om(n) = o w - i M =am-.1(n+2m~1) =am^(n+2m) =am(n+2m). Mn = k2m, 
k integral, we have 

am(n) = 5m-i(w) = 5m-i(w + 2m) = am{n + 2m). 

Thus 2m is a period of am. If 2m is not the period of am and co is the 
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period of amf then 2m must be a multiple of co and w must be a power 
of 2. I t follows in particular that 2m_1 is a period of am. But 

«m(0) = a«^i(0) = aM_i(2w-1) = âw(2^-1) = am(0). 

From this contradiction we infer that 2™-} is not a period of am and 
2m must be the period of am. The proof of the lemma is complete. 

Remark 1. If jfe and m are integers such that k>m, then ak(n) 
= <Xm(n) provided n?*p2m+1

t p integral. 
This follows immediately from the definition of am. 
Remark 2. The sequence of points a^ a2, ce4 • • • converges in X. 
For if k and m are integers such that k>m, 

a2k(n) = atm(n), n = 0, ± 1 , • - • , ±(22w+1 - 1). 

If we define /3 by the mapping 

0(») = «*»(»), | » | < 2 2 w + 1 ~ 1 

then fi(n) is uniquely defined and it is clear that a2m—>j3. 
Remark 3. If x is periodic with the period o), there cannot exist 

integers k and cox such that 0<coi<co and 

(4) x(n + wi) = x(n), n = A + 1» & + 2, • • • , k + œ. 

For suppose (4) were true. If p is integral, there exists an integer q 
such that p+qco = k+i with 1 g i ^ c o . But now we have 

x(p) = #(£ + qui) = #(& + i) = #(& + i + coi) = #(£ + coi). 

Thus x has coi as period, contrary to the hypothesis that the period of 
x is co. 

LEMMA 3. (3 is not periodic. 

For suppose that j3 has the period co. Let the positive integer m be 
so chosen that 22w>co. According to the definition of /3, 

0(n) = «,*(»), n = 0, ± 1 , • • • , +C22-+1 - 1) 

and if $ has period co we have 

<X2m(k + O)) = ÛJ2m(*), 

k = - 22 w + 1 + 1, - 2 2 w + 1 + 2, • • • , - 2 2 w + 1 + 22m. 

Since a2m has the period 22m, it follows from Remark 3 that (5) is 
impossible. We infer that /3 cannot be periodic. 

Remark 4. p(n)=a2m(n), n?*k22m+1, k= ± 1 , ± 2 , 

LEMMA 4. Given e > 0 / j ^ e exist integers I and k>0 such that 
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dfa JT^*G8)) < e, PEL 

Let m be a positive integer such that 2m<l/e, let Z = 22m and let 
fc = 22w+1. Then if £ £ ! and \n\ <2m, we have 

0(J + pk + n) = /3(22™ + ^22w+1 + ») = (x2m(22m + p2*™+1 + n) 

This implies 

and the lemma is proved. 
Since the set pk, p = 0, ± 1 , • • • is relatively dense in J, it follows 

from Lemma 4 that /3 is an almost periodic point. Thus if r(j3) de­
notes the orbit closure of j3 in X, r(j8) is minimal under the trans­
formation group T. From Lemma 4 and Theorem 5 we infer that /3 is 
isochronous and thus r(j8) is O-reducible. From Theorem 6 there 
exists a point 7 of r(/3) at which r(/3) is reducible and 7 is regularly 
almost periodic with respect to T. 

But r(|8) is not completely reducible. For if this were the case the 
transformation group T acting on X would be regularly almost 
periodic and hence equi-uniformly continuous. Since j8 is almost peri­
odic but not periodic, there exists a sequence of points ft, ft, • • • of 
r(j8) such that ft—>j3 and fts^ft * = 1, 2, • • • . Since ft^ft there exists 
an integer n such that ft(w)^j8(w). This implies that d\Hn{§i), 
Ün(j8) ] = 1. Thus if € = 1/2, there exists no ô >0 such that d(ft, ft <8 
implies d[H*(fii), Hp((3)]<e for all p in J. It follows that the trans­
formation group T acting on r(/3) is not equi-uniformly continuous 
and r(ft is not completely reducible. 

Since T is discrete, it follows from Theorem 3 that T(fi) is not point-
wise reducible. Since r(/3) is a minimal set, the orbit closure T(7) of 
7 is identical with r(ft . Thus 7 is a regularly almost periodic point 
with the property that not all points in the orbit closure of 7 are 
regularly almost periodic. 
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THE UNIVERSITY OF PUERTO RICO AND 
THE UNIVERSITY OF VIRGINIA 

A ZERO-DIMENSIONAL TOPOLOGICAL GROUP WITH A 
ONE-DIMENSIONAL FACTOR GROUP 

SAMUEL KAPLAN 

As can be easily shown, if a locally compact topological group is 
zero-dimensional, all of its factor groups are zero-dimensional. In this 
note we give an example of a non locally compact zero-dimensional 
group with a factor group which is topologically isomorphic to the 
real numbers, hence one-dimensional.1 

1. Preliminaries. Let {X} be a set of indices of cardinality c, and 
for each X, let R\ be a topological isomorph of the additive group of 
rational numbers. We form the weak product R of the R\: an element 
r of R is a collection r = {r\}, rx£-Rx, such that for only a finite num­
ber of the X's is rx5^0\. Under the definitions r+r'= {r\+r\ } , 
0 = {0\}, R forms a group. 

Now for each r^Ry we define ||r|| = ]Cx|f\| • Since all but a finite 
number of the r\ — 0\, this sum exists. Clearly | |f+r'| | ^|MI~Hlr1l» 
and || ~HI = IIHI» hence, as can be easily shown, ||r|| defines a metric in 
R under the definition: the distance from r to r' is ||r--r /||. 

LEMMA 1. Let {d\\ be a set of positive real numbers bounded away 
from zero, that is, there exists d>0 such thai dx^dfor all X. Then 

U-{'\^\T\<1} 
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1 Cf. Bourbaki, Topologie generale, chap. I l l , p. 21, exercise 12, for an example of 

a totally disconnected group with a factor group topologically isomorphic to the reals. 
This example was pointed out to me by I. Kaplansky. 


