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It is known that two normal matrices can be diagonalized by the 
same unitary transformation if and only if they commute ; this theo­
rem is ordinarily stated for hermitian matrices. Some generalizations 
of this theorem are known. According to a theorem due to Eckert 
and Young,1 if A and B are two rXs matrices, there are two unitary 
matrices U and V such that UAV=DX and UBV=D2, D\ and D2 

diagonal matrices with real elements, if and only if ABct and Bct A are 
hermitian. I t is also known that a set of normal matrices {Ai} is 
reducible to diagonal matrices under the same unitary similarity 
transformation, UAiUct, if and only if AiA3- = AjAi for all i and j . 
(More generally, it is true that a set of matrices {Ai} with elements 
in the complex field and simple elementary divisors is reducible to 
diagonal matrices under the same similarity transformation if and 
only if AiAj=AjAi for all i and j.) The following will be shown to 
hold: 

THEOREM. If {Ai} is an arbitrary set of nonzero rXs matrices, there 
are unitary matrices U and V of orders rXr and sXs, respectively, such 
that UAiV=Di, Di diagonal and real, if and only if AiAf—AjAf and 
AfAi = AfAjfor all i and j . 

If two unitary matrices U and F exist such that UAi V—Di, Di real 
for all i, then DiDc} = DiD) = DjD\^DjD% where the Di are rXs di­
agonal matrices (that is, the only nonzero elements appear in the da 
position). Therefore, AiAf = A3Af. 

Conversely, let the relations AfAt^AfAj and AiAf=AjAf hold 
for all i, j . The proof is by induction. 

(1) The theorem is true for a set of matrices of dimension lXs, 
Ai= [a[, a", • • • , a[s)]. For there exist unitary matrices U and V 
such that 1 UAiV= [d{, 0, • • • , 0] for d{ real and greater than 0 
since ^ i ^ O . For if UAiV*=[dl, d[', • • • , d[s)], it follows from 
AfAi=A?Ai thatdi' =d<" = • • • =d[s) = 0 and since d{ dl = J / -di 
and d{ is real, d[ =d{. In the same way by means of the second of 
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the given conditions, the theorem is true for a set of matrices of 
dimension r X l . 

(2) Assume the theorem to be true for a set of matrices of dimen­
sion kXl for k^r, l^s — 1 and for k^r — 1, l^s. The theorem will be 
shown to hold for the dimension rXs and the induction will then be 
complete. Let {-4»} be a set of matrices of dimension rXs for which 
the given conditions hold. Let U and V be such that 

VD 021 

Lo3 o j 

where U and V are unitary, D a nonsingular diagonal matrix with 
real positive diagonal elements, and the submatrices 02, 03, and O4 are 
null matrices or non-existent. If 

, J 
it follows from AiAf^AiAf that L,= 03, and from A?Ai=>Ac{Ai 
that i^=0 2 . Also, DGf^GiD and GfD=*DGi from both given condi­
tions. Therefore, D2Gf = DGiD = G?D2 so D2Gi = GiD\ Since D con­
sists of positive real numbers and since Gi commutes with D2, DGi 
= GiD. Then DGf — GiD—DGi and since D is nonsingular, Gf — Gi 
for all i. Then from the given relation A*Af—AjAf, it follows that 
GiGf — GjGf or GiGj — GjGi; therefore the set of hermitian matrices 
{D, G{} are all commutative in pairs and, by the generalized prin­
cipal axis theorem, there exists a unitary matrix U\ which diagonalizes 
all of them. Let Uz = Ui+I be a unitary matrix of the same dimension 
as U and Uz— Uf-\-I of the same dimension as V. Then, 

VD 02T TDi °2l 
L03 OJ LO3 H J 

for all i where the Hi are either non-existent or of dimension kXl 
where k <r and Ks. The theorem follows from the induction hypoth­
esis. 

It is to be noted that if the set {Ai} are all nXn hermitian matrices 
for which AiAf = AjAf or AiAj — AjAi holds, the principal axis trans­
formation for hermitian matrices is obtained and F = Uct. 

According to another result due to Eckert and Young,1 if A and B 
are rXs matrices over the complex field, a necessary and sufficient 
condition that there exist two unitary matrices U and V such that 
VA V=Di and UB V~D2, Dx and D2 diagonal, is that ABct and BctA 
be normal. Since this is a generalization of the earlier result, it would 
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seem reasonable to hope for an extension to a set of matrices {Ai}. 
A simple example shows that this is not the case, however, and the 
following theorem holds: 

THEOREM. A necessary and sufficient condition that a set of nXn 
matrices {Ai} be brought into diagonal forms by the same unitary U, 
V equivalence transformation, UAiV—Di, is that the products AiAf 
and AfAi be normal for all i, j and that Ah(AfAi) = (AiAf)Ak for all i, 
j and k. 

If UAiV—Di for all if then the given conditions can be easily 
verified. 

Conversely, let {̂ 4»} be a set of matrices for which AiAf and 
AfAi are normal and where Ak(AfAi)~(AiAf)Ak. The proof is by 
induction on the order n. The theorem is trivially true if n = l. As­
sume it to be true for order k ^ n — 1. Now consider a system of order 
n. There are two possibilities : for all i, j , either A iAf is a scaler matrix 
or there is at least one pair i, j such that AiAf is not a scaler. 

(1) If for all i, j , AiAf is a scaler, AiAf = kijl and since AiAf is 
similar to AfAi, it is true tha t : 

(a) AiAj = kijl = AjAi for all i,j. 

There are two possibilities: (a) Either all Ai — kiUi where the ki are 
real positive scalers and Ui are unitary; then all Ai are normal and 
from the above, AiAj = AjAi since Aj~f(Af). In this case the prin­
cipal axis transformation theorem applies for normal matrices so 
V= Uctand the theorem is true, (b) There is at least one A^ say A\, 
not of the above form. There exist two unitary £/, V such that 
UAiV = Di is diagonal with real non-negative elements. Also, D% is 
not scaler for then Ax=* UctDiVct^DiUctVct\ but this contradicts the 
assumption. Let UAjV^Aj. Then, 

(a): UAiVVctAcfuct = Ukulf = kuI = DiA?; 

VctAclvctVA,V = V%iV = *i,I = ATDx. 

Therefore, 

and 

Af
iDl = DxA\. 

Since D\ is not scaler, the Aj are direct sums of matrices of order 
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k^n — 1. But for these matrices the given conditions hold and the 
theorem is true. 

(2) If for some i> j the products A iAf (and consequently AfA i) 
are not scaler, there exist for this Ai and A y unitary matrices Uij and 
Vij such that 

For all k, AMfAi) = (AiAf)Ah. 
Apply the Z7ty, Vij and obtain 

UijAk(A)Ai)Vij = Uij(AiA))AkVij 

so 

ct ct ct ct ct ct 

Uij/LkVijV%jA.j U%jUijA.%Vij = UijAiVijVijA j U%jUijAjcVijy 

SO 

(UiiAuViiKD'i'Di) = (DiD'hiUijAkVij). 

Therefore, the matrix UijAkVij commutes with the nonscaler diagonal 
matrix DfDi. Since the unitary transformation may be chosen so 
that like elements of DfDi appear together in order, UijAkVij is a 
direct sum of matrices of order m<n for all k. Since the submatrices 
satisfy these conditions, the theorem is true by induction. 

UNIVERSITY OF WISCONSIN 


