SOME ANALOGS OF THE GENERALIZED PRINCIPAL AXIS TRANSFORMATION

N. A. WIEGMANN

It is known that two normal matrices can be diagonalized by the same unitary transformation if and only if they commute; this theorem is ordinarily stated for hermitian matrices. Some generalizations of this theorem are known. According to a theorem due to Eckert and Young, if A and B are two $r \times s$ matrices, there are two unitary matrices U and V such that $UAV=D_1$ and $UBV=D_2$, D_1 and D_2 diagonal matrices with real elements, if and only if AB^{ct} and $B^{ct}A$ are hermitian. It is also known that a set of normal matrices $\{A_i\}$ is reducible to diagonal matrices under the same unitary similarity transformation, UA_iU^{ct} , if and only if $A_iA_j=A_jA_i$ for all i and j. (More generally, it is true that a set of matrices $\{A_i\}$ with elements in the complex field and simple elementary divisors is reducible to diagonal matrices under the same similarity transformation if and only if $A_iA_j=A_jA_i$ for all i and j.) The following will be shown to hold:

THEOREM. If $\{A_i\}$ is an arbitrary set of nonzero $r \times s$ matrices, there are unitary matrices U and V of orders $r \times r$ and $s \times s$, respectively, such that $UA_iV = D_i$, D_i diagonal and real, if and only if $A_iA_i^a = A_jA_i^a$ and $A_i^aA_i = A_i^aA_j$ for all i and j.

If two unitary matrices U and V exist such that $UA_iV = D_i$, D_i real for all i, then $D_iD_j^a = D_iD_j^i = D_jD_i^a = D_jD_i^a$ where the D_i are $r \times s$ diagonal matrices (that is, the only nonzero elements appear in the d_{ii} position). Therefore, $A_iA_j^a = A_jA_i^a$.

Conversely, let the relations $A_j^{\alpha}A_i = A_i^{\alpha}A_j$ and $A_iA_j^{\alpha} = A_jA_i^{\alpha}$ hold for all i, j. The proof is by induction.

(1) The theorem is true for a set of matrices of dimension $1 \times s$, $A_i = [a_i', a_i'', \dots, a_i^{(s)}]$. For there exist unitary matrices U and V such that $UA_1V = [d_1', 0, \dots, 0]$ for d_1' real and greater than 0 since $A_1 \neq 0$. For if $UA_iV = [d_i', d_i'', \dots, d_i^{(s)}]$, it follows from $A_i^aA_1 = A_1^aA_i$ that $d_i'' = d_i''' = \dots = d_i^{(s)} = 0$ and since $d_1' \cdot \bar{d}_i' = \bar{d}_1' \cdot d_i'$ and d_1' is real, $\bar{d}_i' = d_i'$. In the same way by means of the second of

Presented to the Society, April 26, 1947; received by the editors November 26, 1947.

¹ Bull. Amer. Math. Soc. vol. 45 (1939) pp. 118–121. See also J. Williamson, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 920–922.

the given conditions, the theorem is true for a set of matrices of dimension $r \times 1$.

(2) Assume the theorem to be true for a set of matrices of dimension $k \times l$ for $k \le r$, $l \le s-1$ and for $k \le r-1$, $l \le s$. The theorem will be shown to hold for the dimension $r \times s$ and the induction will then be complete. Let $\{A_i\}$ be a set of matrices of dimension $r \times s$ for which the given conditions hold. Let U and V be such that

$$UA_1V = \begin{bmatrix} D & 0_2 \\ 0_3 & 0_4 \end{bmatrix}$$

where U and V are unitary, D a nonsingular diagonal matrix with real positive diagonal elements, and the submatrices 0_2 , 0_3 , and 0_4 are null matrices or non-existent. If

$$UA_{i}V = \begin{bmatrix} G_{i} & K_{i} \\ L_{i} & H_{i} \end{bmatrix}$$

it follows from $A_1A_i^a = A_iA_1^a$ that $L_i = 0_3$, and from $A_i^aA_1 = A_1^aA_i$ that $K_i = 0_2$. Also, $DG_i^a = G_iD$ and $G_i^aD = DG_i$ from both given conditions. Therefore, $D^2G_i^a = DG_iD = G_i^aD^2$ so $D^2G_i = G_iD^2$. Since D consists of positive real numbers and since G_i commutes with D^2 , $DG_i = G_iD$. Then $DG_i^a = G_iD = DG_i$ and since D is nonsingular, $G_i^a = G_i$ for all i. Then from the given relation $A_iA_j^a = A_jA_i^a$, it follows that $G_iG_j^a = G_jG_i^a$ or $G_iG_j = G_jG_i$; therefore the set of hermitian matrices $\{D, G_i\}$ are all commutative in pairs and, by the generalized principal axis theorem, there exists a unitary matrix U_1 which diagonalizes all of them. Let $U_2 = U_1 + I$ be a unitary matrix of the same dimension as U and $U_3 = U_1^a + I$ of the same dimension as V. Then,

$$U_2UA_1VU_3 = \begin{bmatrix} D & 0_2 \\ 0_3 & 0_4 \end{bmatrix}, \ U_2UA_iVU_3 = \begin{bmatrix} D_i & 0_2 \\ 0_3 & H_i \end{bmatrix}$$

for all i where the H_i are either non-existent or of dimension $k \times l$ where k < r and l < s. The theorem follows from the induction hypothesis.

It is to be noted that if the set $\{A_i\}$ are all $n \times n$ hermitian matrices for which $A_i A_j^a = A_j A_i^a$ or $A_i A_j = A_j A_i$ holds, the principal axis transformation for hermitian matrices is obtained and $V = U^{ci}$.

According to another result due to Eckert and Young, if A and B are $r \times s$ matrices over the complex field, a necessary and sufficient condition that there exist two unitary matrices U and V such that $UAV = D_1$ and $UBV = D_2$, D_1 and D_2 diagonal, is that AB^{ct} and $B^{ct}A$ be normal. Since this is a generalization of the earlier result, it would

seem reasonable to hope for an extension to a set of matrices $\{A_i\}$. A simple example shows that this is not the case, however, and the following theorem holds:

THEOREM. A necessary and sufficient condition that a set of $n \times n$ matrices $\{A_i\}$ be brought into diagonal forms by the same unitary U, V equivalence transformation, $UA_iV = D_i$, is that the products $A_iA_j^{a}$ and $A_j^{a}A_i$ be normal for all i, j and that $A_k(A_j^{a}A_i) = (A_iA_j^{a})A_k$ for all i, j and k.

If $UA_iV=D_i$ for all *i*, then the given conditions can be easily verified.

Conversely, let $\{A_i\}$ be a set of matrices for which $A_iA_j^a$ and $A_j^aA_i$ are normal and where $A_k(A_j^aA_i) = (A_iA_j^a)A_k$. The proof is by induction on the order n. The theorem is trivially true if n=1. Assume it to be true for order $k \le n-1$. Now consider a system of order n. There are two possibilities: for all i, j, either $A_iA_j^a$ is a scaler matrix or there is at least one pair i, j such that $A_iA_j^a$ is not a scaler.

(1) If for all $i, j, A_i A_j^a$ is a scaler, $A_i A_j^a = k_{ij}I$ and since $A_i A_j^a$ is similar to $A_j^a A_i$, it is true that:

(a)
$$A_i A_j^{ct} = k_{ij} I = A_j^{ct} A_i \qquad \text{for all } i, j.$$

There are two possibilities: (a) Either all $A_i = k_i U_i$ where the k_i are real positive scalers and U_i are unitary; then all A_i are normal and from the above, $A_i A_j = A_j A_i$ since $A_j = f(A_j^a)$. In this case the principal axis transformation theorem applies for normal matrices so $V = U^{ct}$ and the theorem is true. (b) There is at least one A_i , say A_1 , not of the above form. There exist two unitary U, V such that $UA_1V = D_1$ is diagonal with real non-negative elements. Also, D_1 is not scaler for then $A_1 = U^{ct}D_1V^{ct} = D_1U^{ct}V^{ct}$; but this contradicts the assumption. Let $UA_jV = A_j'$. Then,

(a):
$$UA_{1}VV^{ct}A_{j}^{ct}U^{ct} = Uk_{1j}U^{ct} = k_{1j}I = D_{1}A_{j}^{ct};$$
$$V^{ct}A_{j}^{ct}U^{ct}UA_{1}V = V^{ct}k_{1j}V = k_{1j}I = A_{j}^{ct}D_{1}.$$

Therefore,

$$D_1 A_i^{\prime ct} = A_i^{\prime ct} D_1$$

and

$$A'_{i}D_{1}=D_{1}A'_{i}.$$

Since D_1 is not scaler, the A_i are direct sums of matrices of order

 $k \le n-1$. But for these matrices the given conditions hold and the theorem is true.

(2) If for some i, j the products $A_i A_j^a$ (and consequently $A_j^a A_i$) are not scaler, there exist for this A_i and A_j unitary matrices U_{ij} and V_{ij} such that

$$U_{ij}A_iV_{ij} = D_i, \qquad U_{ij}A_jV_{ij} = D_j.$$

For all k, $A_k(A_j^{ct}A_i) = (A_iA_j^{ct})A_k$.

Apply the U_{ij} , V_{ij} and obtain

$$U_{ij}A_k(A_j^{ct}A_i)V_{ij} = U_{ij}(A_iA_j^{ct})A_kV_{ij}$$

so

$$U_{ij}A_{k}V_{ij}V_{ij}^{ct}A_{j}^{ct}U_{ij}^{ct}U_{ij}A_{i}V_{ij} = U_{ij}A_{i}V_{ij}V_{ij}^{ct}A_{j}^{ct}U_{ij}^{ct}U_{ij}A_{k}V_{ij},$$

so

$$(U_{ij}A_kV_{ij})(D_i^{ct}D_i) = (D_iD_j^{ct})(U_{ij}A_kV_{ij}).$$

Therefore, the matrix $U_{ij}A_kV_{ij}$ commutes with the nonscaler diagonal matrix $D_j^{cl}D_i$. Since the unitary transformation may be chosen so that like elements of $D_j^{cl}D_i$ appear together in order, $U_{ij}A_kV_{ij}$ is a direct sum of matrices of order m < n for all k. Since the submatrices satisfy these conditions, the theorem is true by induction.

University of Wisconsin