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IRVING KAPLANSKY 

I. INTRODUCTION 

1. The literature. Topological rings were apparently first defined 
in van Dantzig's thesis [13], [14].1 Of course innumerable instances 
of topological rings had been studied earlier: notably Hensers £-adic 
numbers and their abstraction by Kürschak [54] to fields with valua­
tions. A very considerable literature has since grown up around 
valuation theory and its applications to algebraic geometry, algebraic 
functions, and algebraic number theory. Van Dantzig's thesis in­
augurated a second stream of investigation: locally compact rings. 
During the present decade much study has been devoted to Banach 
algebras (normed rings) in work begun by Gelfand and his colleagues, 
though foreshadowed by Stone [75], Nagumo [60 ], and Hebroni 
[32]. This address is divided into three parts more or less reflecting 
these three lines of investigation: topological division rings, locally 
compact rings, and normed algebras. 

Besides papers actually referred to in the address, the bibliography 
includes most of the relevant contributions of the last decade. In cer­
tain respects there is no pretense of completeness: for example, there 
are only a few of the papers on valuations. Particular attention should 
perhaps be called to the reports of Köthe [52] and Lorch [55], and to 
the somewhat less closely related reports of Dunford [19], Taylor 
[78], and Hyers [34]. 

2. Definitions. By a topological ring we mean a ring and a Haus-
dorff space in which a — b and db are jointly continuous in a and b. 
This is substantially the definition of van Dantzig, except that he 
imposed a countability restriction. A brief account of the funda­
mentals is presented in Bourbaki [l0]. 

By a normed algebra we mean a normed linear space which is at 
the same time an algebra satisfying 

(i) M s Ml ||4 
If one merely assumes joint continuity of a&, one can pass to an 
equivalent norm satisfying (1). A Banach algebra is a complete 
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809 



810 IRVING KAPLANSKY [September 

normed algebra. It was noted by Gelfand [22, Theorem 1 ] that in the 
presence of completeness, separate continuity of ab implies joint 
continuity. Arens [7, Theorem 5 ] extended this result to the case of 
any topological ring whose underlying space is complete metric. In 
both accounts the proof rests ultimately on a category argument. 

To discuss inverses without assuming a unit element we introduce 
the operation a o b = a+b+ab, and call b a right quasi-inverse of a 
if a o i = 0, a quasi-inverse if also b o a = 0. An element is quasi-
regular if it has a quasi-inverse. Under the operation o the quasi-
regular elements form a group, which will be a topological group if 
quasi-inversion is continuous. For a normed algebra this continuity 
can be proved in much the same way as in elementary analysis (cf. 
[7, p. 626]). The continuity of the quasi-inverse is also valid in 
locally compact rings without divisors of 0 [44, Theorem 8]. However, 
local compactness alone does not suffice, as is shown by an example 
in [44] ; nor does it suffice to have a complete metric space [7, p. 630 ]. 

To treat maximal ideals in rings without unit it is convenient, fol­
lowing Segal [69, p. 74] to introduce regular ideals. A (right, two-
sided) ideal I is regular if there exists a (left, two-sided) unit modulo 
ƒ. In a Banach algebra all regular maximal ideals are closed. More 
generally this is true in any ring in which the right quasi-regular ele­
ments form an open set; such rings are called (?r-rings in [40]. If the 
quasi-regular elements are open (a formally stronger condition), the 
ring is called a Q-ring. 

We shall use the Perlis-Jacobson radical, defined in [38] to be the 
union of the right quasi-regular ideals; it may be shown to be the 
intersection of the right (or left) regular maximal ideals. Hence in a 
ôr-ring the radical is closed. The radical is also closed if the right 
quasi-regular elements form a closed set, which is true for example in 
a compact ring. But the radical is not always closed, as is shown by an 
example in [40 ]. In certain respects the following is a simpler 
example. Let P be the ring of £-adic integers and A the ring of all 
infinite matrices over P, with only a finite number of nonzero ele­
ments in each row. We topologize A with the "finite" topology: the 
general neighborhood of 0 consists of all matrices with first n rows 0. 
(The £-adic topology in P is ignored ; in fact any ring with a non-nil 
radical will do in place of P.) Then it is easily checked that the radical 
R of A contains all matrices with only a finite number of nonzero 
entries, and these all divisible by p. The matrix £(£12+023+034+ ' ' #) 
therefore lies in the closure of R, but it is not itself in P, since it is not 
even quasi-regular. 

A useful concept in the study of topological rings is that of bound-
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edness, first introduced by Shafarevich [72], and presumably in­
spired by the analogous concept for topological linear spaces. A set 
5 in a topological ring is right bounded if for any neighborhood U of 
0 there exists a neighborhood F of 0 such that SVC. U. Left bounded-
ness is analogously defined, and a set is bounded if it is both right and 
left bounded. Compact sets are bounded, and for algebraic purposes 
bounded sets may often be regarded as the appropriate generaliza­
tion of compact sets. For example, a polynomial is uniformly con­
tinuous on any bounded set; and if the quasi-inverse is continuous, 
then it is uniformly continuous on any bounded set. 

II. TOPOLOGICAL DIVISION RINGS 

3. Normed division algebras. Mazur announced in [58] the 
theorem that the only (complex) normed division algebra is the field 
of complex numbers itself. Gelfand proved this in [22], asserting that 
his proof was different from Mazur's. Gelfand's proof rests on an 
application of Liouville's theorem and, as Lorch has remarked, sub­
stantially the same result had been given earlier by Taylor [77]; the 
same sort of argument occurs in many older references. 

We present this Taylor-Gelfand argument in a somewhat general­
ized form substantially due to Arens [7]. Let A be a topological 
algebra over the complex numbers. We assume that A has a unit, 
that the inverse in A is continuous, and that A admits a total set of 
f unctionals (the latter is true for example if A, as a topological linear 
space, is convex). The spectrum of x is the set of scalarsX such that 
(x — X)""1 does not exist. We assert that every element of A has a non-
void spectrum. For if not, we form for an arbitrary functional ƒ the 
function g(X) =ƒ[(#— X)""1], and verify that g(X) is entire and ap­
proaches 0 as X—»oo. By Liouville's theorem, g = 0, whence (# —X)"*1 

= 0, a contradiction. If we specialize A to be a division algebra, we 
deduce the Gelfand-M azur theorem: every element of A is a scalar 
multiple of the unit. By a standard embedding device one obtains a 
corresponding theorem in the real case; here the reals, complexes or 
quaternions may arise. 

While the above argument appears to have squeezed everything 
possible out of Liouville's theorem, it seems probable that stronger 
theorems are true, and perhaps even that no nontrivial topological 
division algebras over the complexes exist at all. The question may be 
rephrased thus: is it possible to convert the field of rational functions 
f(z) of a complex vaiiable z into a topological algebra? An easily 
proved result in this connection is that it cannot be done if f(z) is to 
be continuous jointly in ƒ and z. 
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Returning to normed algebras, we mention two generalizations of 
the Gelfand-Mazur theorem which are given in [46] and [45] respec­
tively. (1) Call x a topological divisor of 0 if there exists a non-null 
sequence yn such that xyn or ynx—»0. The following theorem is a re­
finement of results in [73], [7] and [68]: a normed algebra without 
any nonzero topological divisors of 0 is the reals, complexes, or qua­
ternions. It is to be observed that neither a unit element nor com­
pleteness is assumed. (2) A Banach algebra which is regular in the 
sense of von Neumann (for any a there exists an x such that axa = a) 
is finite-dimensional. Here completeness is indispensable. 

Topological linear spaces are of course necessarily connected, and it 
is perhaps natural, in connection with the above results, to ask what 
connected fields exist. In a somewhat different context, much the 
same question was raised by Baer and Hasse [9]. Some light has been 
thrown on this question recently, by Dieudonné [17] who con­
structed a connected subfield of the complex numbers, and Kapuano 
[47] who constructed a one-dimensional subfield of the complex 
numbers (in both cases a field other than the reals, of course). 

4. Valuations. Kürschak [54] defined a valuation of a division ring 
to be a real-valued function satisfying \a\ ^ 0 , ja| =0 if and only if 
a = 0, \ab\ = | a | \b\t \a+b\ û\a\ + \b\. He was inspired by two out­
standing examples: complex numbers and £-adic numbers. Ostrow-
ski [61 ] showed that these two examples are typical. A field with a 
valuation is either (archimedean case) a subfield of the complex num­
bers with essentially its ordinary absolute value, or (nonarchimedean 
case) it satisfies with the p-adic numbers the strong triangle inequalty 

(2) \a + b\ ^ m a x ( | a\ , \b\). 

Thus structure theory is of interest only in the non-archimedean case, 
although in applications (notably algebraic number theory) it re­
mains important to consider all valuations. Krull [53] took the next 
step of observing that in (2), addition of real numbers has disap­
peared; only the multiplicative group of positive real numbers is 
relevant, and one may generalize by replacing it by an arbitrary 
ordered abelian group T. The classification of fields with valuations 
was successfully studied in case T is the additive group of integers; cf. 
Teichmüller [79] and MacLane [56]. For an arbitrary group I\ 
definite but more complicated results were obtained in [39]. A similar 
study has been made for local rings by Cohen [12]. 

Examination of some of the proofs in valuation theory reveals that 
full use is not made of the existence of a valuation. In many cases 
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one can get by with a topological field having the following property: 
if a set 5 is bounded away from 0, then S"1 is bounded (in the sense of 
§2). In [41 ], division rings with this property are said to be of "type 
V." The same class of division rings is briefly studied in an exercise 
in Bourbaki [10, p. 57, Ex. 13]. 

The following are examples of theorems which carry over to the 
case of type V. (1) A finite-dimensional topological linear space over a 
complete division ring of type V necessarily carries the Cartesian 
product topology. (2) The completion of an algebraically closed field 
of type V is algebraically closed. It has yet to be determined whether 
a finite algebraic extension of a field of type V can be topologized so 
as to be of type V. This is proved for quadratic extensions in [41 ]. 

Fields with an (ordinary real-valued) valuation can be char­
acterized as being of type V and having a neighborhood of 0 consist­
ing of topologically nilpotent elements [41, Theorem 3]. Zelinsky [83] 
has similarly characterized fields with a non-archimedean valuation. 
As a test problem for further progress, one may propose the following 
question: how can the field of rational numbers be topologized so as 
to be of type V? Are there any such topologies other than those given 
by valuations? 

We mention finally [42], in which there is presented a topological 
discussion of polynomials in fields of type V. In particular a recent 
theorem of Habicht [3l] on real closed fields is generalized. (It is to 
be observed that any ordered field in its order topology is of type V.) 

5. Locally compact division rings. With the examples of the real 
numbers and £-acid numbers before one, it is natural to ask what 
locally compact fields exist, and in particular if any exist essentially 
different from these two examples. Such an investigation was under­
taken independently by van Dantzig [13] and Pontrjagin [64]. The 
latter showed that the only locally compact connected division rings 
are the reals, complexes, and quaternions. (In his book [65, pp. 171-
178] he assumes the second axiom of countability, but no countability 
assumption is made in the paper.) Van Dantzig confined himself to 
the commutative case and assumed the second axiom of countability. 
In the connected case he obtained the result cited above (excluding of 
course the quaternions). He also treated the totally disconnected 
case, obtaining either a finite extension of the £-adic numbers (a 
'V-adic field") or the field of formal power series over a finite field 
(a "s-adic field"). Jacobson [36] completed the problem by treating 
the non-commutative totally disconnected case, showing that one gets 
an algebra of finite order over a £-adic or s-adic field; known struc-
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ture theory shows that the algebra is cyclic. Jacobson assumed the 
first axiom of countability in his proof; however the opening lines in 
Pontrjagin's paper constitute a proof that any locally compact divi­
sion ring satisfies the first axiom of countability. Otobe [62 ] proved 
again this superfluity of a countability assumption. It may be re­
marked that slightly later in the argument one of course gets the 
second axiom of countability free of charge (always assuming, as was 
tacitly done above, that the topology is not discrete). 

Thus the structure of locally compact division rings was fully de­
termined. The elegance of the result has attracted further study since 
then. Shafarevich [72] made the following contribution: he gave a 
characterization of those topological fields which admit a valuation 
giving the same topology. The conditions in question are readily 
verifiable in a locally compact field, and so the problem is reduced to 
one in valuation theory. The known theorems on valuations readily 
complete the solution. In the non-commutative case there are some 
additional difficulties which were overcome in [41 ]. A noteworthy 
feature of this solution of the problem is that it treats the connected 
and totally disconnected cases on precisely the same footing. 

The latter merit is also shared by the interesting proof announced 
by Braconnier [ i l ] . He observes that the mapping a—>ax (XT*Q) is a 
bicontinuous automorphism of the additive group of a locally com­
pact division ring. The uniqueness of Haar measure shows that this 
mapping multiplies all measures by a positive real number v(x). One 
then verifies that v(x) is in fact a valuation. From this point on, 
valuation theory is presumably to be applied. 

Various generalizations of the Pontrjagin-van Dantzig-Jacobson 
theory might be proposed. Locally compact rings which are not neces­
sarily division rings will be discussed in Part III of this address. The 
hypothesis of local compactness might be weakened, perhaps most 
plausibly to local boundedness. Finally we shall mention the weaken­
ing or dropping of the associative law. This has some interest from 
the point of view of the foundation of geometry—cf. Kolmogoroff 
[50] and Köthe [52]; and, in view of the work of Ruth Moufang, 
particular interest is attached to alternative division rings. The con­
nected case falls under the results discussed in §6 below. It appears 
that nothing is known in the totally disconnected case; but one may 
venture the conjecture that the only totally disconnected locally 
compact alternative division rings are Cayley-Dickson algebras over 
a £-adic or s-adic field. The methods that work in the associative case 
do not seem to apply without very considerable modification, though 
perhaps Braconniers is the most hopeful. 
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III. LOCALLY COMPACT RINGS 

6. The component of 0. A great deal is known about the structure 
of locally compact abelian groups, mainly through the work of 
Pontrjagin and van Kampen. Expositions can be found in [65] and 
[80]. Thus the study of locally compact rings begins with the observa­
tion that the structure of the underlying additive group is substan­
tially known. But even if the additive group is completely known, 
this does not mean that there is nothing left to study in the ring. 
To cite an extreme case: finite abelian groups are completely known, 
but it can hardly be said that there are no unsolved questions about 
finite rings. 

Nevertheless the additive theory has provided strong tools for 
ring investigations. This is particularly notable in the connected case, 
where fairly decisive results were obtained by Jacobson and Taussky 
[35]. The heart of the argument is given in [44] in the following gen­
eral form: let A be a locally compact ring, C the component of 0, 
and B a right bounded additive subgroup of A ; then CB = 0. This is a 
fairly immediate consequence of the existence of sufficiently many 
characters of the additive group of A, which in turn rests ultimately 
on the Peter-Weyl theorem. Indeed the cited result is true under the 
mere hypothesis (in lieu of local compactness) of the existence of suffi­
ciently many characters, or even the still weaker hypothesis that there 
exist sufficiently many continuous homomorphisms into a group with 
no arbitrarily small subgroups. 

We quote next the structure theorem which asserts that A is the 
direct sum of a vector group N and a group in which the component 
P of 0 is compact [80, p. 110], and we deduce P2 = PiVr=iVP = 0. In 
particular if A is compact and connected, A2 = 0. In any event, if A 
is connected, the hypothesis that there is no total divisor of 0 will 
entail P = 0, A=N, and it follows readily that A is an algebra of 
finite order over the reals. If it is an associative division algebra we 
get the theorem of Pontrjagin, and if alternative, A may further be 
the Cayley numbers. We may note at this point that these four 
algebras have also been characterized by Albert [l ] as being precisely 
those that admit valuations which are homogeneous with respect to 
real scalars. 

Something further can be said about locally compact connected 
rings without the assumption that there are no total divisors of 0. We 
in any event have the additive decomposition A=N+P, with 
PA == 4̂P = 0. We may thus describe the structure of A as follows: N 
is an algebra of finite order over the reals, P a compact abelian group, 
and multiplication takes place in A according to the rule 
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On + pi)(n2 + P2) = niti2 + f (nu n%) 

where tii(£N, p » £ P , and ƒ is a continuous homomorphism of the 
Kronecker product NXN into P. To some extent one can prescribe ƒ 
more fully in terms of the structure of Nf but we shall not enter into 
details. The following remark may however be of interest. If A is 
locally connected, then P is a direct sum of circle groups, and ƒ is a 
direct sum of characters. If we write {Ui} for a basis of Nf then the 
characters in question take the form 

( ] £ %iUh ] £ yiuj) —> ]C UiXQi (mod 1), 

ta being real numbers. If finally A is locally Euclidean, this remark 
shows that a local coordinate system is introducible in which ring 
multiplication is a bilinear function. The analogue of Hilbert's fifth 
problem for rings thus has a strongly affirmative answer. 

If we are given an arbitrary locally compact ring A, then the pre­
ceding discussion may be applied to its component C of 0. To some 
extent, questions on the structure of A may be reduced to the ana­
logous ones for the connected ring C and the totally disconnected ring 
A — C] details are given in [44]. In the remainder of our discussion 
of locally compact rings we shall confine ourselves to the totally dis­
connected case. 

7. The compact case. The fundamental feature of the totally dis­
connected case is the existence of group neighborhoods of 0, a result 
due to van Kampen. For a compact ring A we may pass at once to 
ideal neighborhoods of 0; if U is a group neighborhood we can find V 
such that the open ideal V+AV+VA+AVA is contained in U. 
Thus a compact totally disconnected ring is &„-adic in the sense of 
van Dantzig [15]. This fact makes possible a workable theory of the 
radical and semi-simplicity, as presented in [40 ]. 

Call an ideal J topologically nilpotent if for any neighborhood U 
of 0 there exists an integer n such that InQU. We begin with the 
theorem that the radical of A is topologically nilpotent; this is an 
immediate consequence of the ideal neighborhoods and the nil-
potence of the radical of a finite ring. We can then proceed to a com­
plete determination of compact semi-simple rings. Theorem : they are 
Cartesian direct sums of (any number of) finite simple rings. We shall 
sketch a proof which is slightly simpler than that in [40 ], the simpli­
fication resting on the use of regular ideals. First we show that 
in a compact semi-simple ring A there exist open regular maximal 
ideals, and that their intersection is 0; the proof in [40 ], for the cor-
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responding statement with the word "regular" deleted, is valid almost 
unchanged. This already proves that A is a subdirect sum of finite 
simple rings. The structure theory of finite rings shows moreover that 
any finite combination of coordinates occurs ; because of the compact­
ness we readily pass to the complete direct sum. 

This determination of compact semi-simple rings makes possible 
some results on the non-semi-simple case. These are obtained by the 
classical procedure of constructing in A idempotents which map on 
the idempotents of A — R, where R is the radical. It is appropriate to 
cite at this point the following unpublished remark due to Jacobson. 
The construction of idempotents in question can be carried through 
in a ring A if its radical R satisfies the following condition: for any 
yÇzR the equation x2+x =y can be solved for x in R. The solvability 
of this equation can be established by a series expansion which is 
valid if y is nilpotent in the ordinary sense. In our topological con­
text, nilpotence of y in the topological sense will do, provided there is 
some further assurance of the convergence of the series. For compact 
rings, this assurance is provided by the group neighborhoods ; in 
Banach algebras the convergence can be established by estimations 
of the norm. It may be well to remark that there exist rings where 
x2+x = y is not always solvable in the radical—an example is fur­
nished by the ring of all rational numbers with odd denominators. In a 
sense we may ascribe the failure of this ring to the fact that it is not 
complete in its natural (2-adic) topology. 

The ability to construct idempotents carries with it certain struc­
ture theorems for compact rings, notably an additive decomposition 
into primary rings, and the fact that a primary ring is the ring of 
matrices over a completely primary ring. Besides the light they shed 
on compact rings, these results are useful in the locally compact case 
as we shall see in §8. 

This comparatively complete array of structure theorems runs of 
course parallel to the classical theory of rings with descending chain 
condition. It is natural to ask whether one can formulate a theory 
covering both cases at once. In [44] it is shown that a suitable set of 
axioms for this purpose is given by: (1) local compactness, (2) bound-
edness, (3) the descending chain condition for right ideals containing 
a fixed open two-sided ideal. 

8. Compact subrings. Let A be a locally compact totally discon­
nected ring. We know that A has a system of group neighborhoods of 
0; but we cannot pass to ideal neighborhoods of 0 as we did in the 
compact case. However we can achieve the next best thing: subring 
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neighborhoods of 0. The argument for this is implicit in the work of 
Jacobson [36] and runs as follows. For a compact open subgroup U 
select an open subgroup V such that VC.U, VUQU. Then W= V 
+ V2+ V*+ • • -is a compact open subring contained in U. 

The existence of these compact open subrings provides a foothold 
from which an invasion of locally compact rings becomes possible to 
some extent, and is launched in [44]. The spirit of the investigation 
is as follows. Let B be a compact open subring of A. We subdivide 
into two cases. (1) The radical of B is open: in this case B, and hence 
also A, is a Q-ring. (2) The radical of B is not open: in this case there 
exist idempotents arbitrarily near zero, by the compact ring theory. 
In either eventuality we have something from which we may hope to 
proceed further. 

We mention two theorems which are proved in this way in [44]. 
(a) If A has no divisors of 0, or under any of several alternative hy­
potheses, we can rule out case (2) and conclude unreservedly that A is 
a Q-ring. (b) If A is not a radical ring it contains at least one closed 
regular maximal right ideal. Some contributions are also made in 
[44] to the structure theory of simple and semi-simple locally com­
pact rings, but a reasonably complete theory has yet to be con­
structed. 

I V . NORMED ALGEBRAS 

9. The radical. The fundamental result on the radical of a Banach 
algebra is due to Gelfand [22]; cf. also Jacobson [38]. We present a 
somewhat generalized version. Let A be a complex Banach algebra. 
As is appropriate if A does not have a unit, we define the spectrum 
of xÇzA to consist of all scalars X such that —X""1* does not have a 
quasi-inverse. Then 

(3) sup J spectrum (x) | = Km ||#n||1/n. 
n-+<o 

The proof rests on the expansion of the quasi-inverse of ~X~xx as a 
power series in X and examination of the radius of convergence; by 
taking functionals one can reduce the problem to the case of ordinary 
analytic functions. With a suitable definition of the spectrum, (3) 
can also be extended to a real Banach algebra. 

If in particular x is in the radical, then its spectrum contains only 0, 
and it follows that xn—>0. One easily deduces that the radical is the 
union of all nil ideals, a nil ideal being one consisting entirely of 
topologically nilpotent elements. It seems remarkable that this nil-
potence of the elements of the radical is valid both for compact rings 
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and Banach algebras, but must be established by such different 
methods. 

10. Semi-simple algebras* The analogy between Banach algebras 
and rings with a finiteness condition persists to some extent in the 
structure theory of semi-simple algebras; that is, in certain cases we 
obtain a (suitably generalized) direct sum of (suitably generalized) 
matrix algebras. Of course in the commutative case the matrix alge­
bras collapse. We mention at this point that great simplifications also 
occur in the case of completely continuous Banach algebras (that is, 
algebras in which the mappings x~*ax and x—>xa are completely con­
tinuous). Such algebras are studied in [2l] and [46]. 

Probably the most satisfactory structure theorem for commutative 
Banach algebras is due to Gelfand and Neumark [26], Let A be a 
complex commutative Banach algebra with unit, and suppose there 
is an involution x-*x* which is conjugate linear and satisfies \\xx*\\ 
= ||x||||x*||. Then A is isomorphic to the algebra of all continuous 
complex functions on a compact Hausdorff space, with the norm 
identified as sup, and the * identified as conjugate. An obscure point 
in the Gelfand-Neumark proof was cleared up by Arens [5], who also 
[6] extended the theorem to the case where no unit is assumed. 
Analogous characterizations of the algebra of all real functions are 
given in [6] and [71 ] ; and in [s] the real and complex cases are united. 

There are important applications of such a characterization of the 
ring of continuous functions. We mention two in particular: the 
Stone-Cech compactification of a completely regular space, and the 
spectral theorem for a bounded normal operator on Hubert space. 
Various accounts of these two applications can be found in the recent 
literature. Another interesting example on which to test the power of 
such a characterization is the theorem proved by Stone in [75] and 
Eidelheit in [20 ]: a closed sub-algebra of the algebra of continuous 
functions on a compact Hausdorff space is itself an algebra of all 
continuous functions on a compact Hausdorff space. 

The main theorem of Gelfand and Neumark in [26] concerned non-
commutative Banach algebras. To the axioms listed above one adds: 
||#*|| ^H^H and 1+xx* has an inverse (it is not known whether these 
two axioms are independent of the preceding ones). It is then shown 
that the algebra is isomorphic to a closed self-adjoint subalgebra of 
the algebra of all bounded operators on a Hubert space. This is an 
important and elegant theorem, but it should be pointed out that the 
result merely identifies the algebra as being a subset of something, 
and for many purposes this is a serious drawback. 
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11. H*-algebras. There is a structure theorem for noncommuta-
tive Banach algebras which does effect a complete identification of the 
algebras in question as being a full direct sum of full matrix algebras, 
in remarkable analogy to the finite-dimensional case. The theorem 
applies to the ü*-algebras of Ambrose [2]. The axioms are as follows: 
A is a Hilbert space and a Banach algebra; there is an involution 
which is conjugate linear and satisfies (xy, z) = (y, x*z), (yx, z) 
= (;y, zx*) where the parentheses denote the Hilbert space inner 
product; and finally we add an axiom assuring nontriviality: xA = 0 
implies # = 0. The structure theorem asseits that A is a direct sum of 
simple i?*-algebras, the direct sum being meant in the Hilbert space 
sense; and a simple 2ï*-algebra is the set of all matrices a = (a^) of 
complex numbers with ]Cla*v[2<°° under ordinary matrix multi­
plication, with 

(4) (a, b) = aj^aifia 

and a* = (aji)e (the superscript denoting complex conjugate). In [43] a 
somewhat simplified proof is given, and the theorem is extended to 
real iï*-algebras. 

The outstanding application of this theorem is to the 1,2-algebra of 
a compact group. Let G be a compact group and A the algebra of 
complex functions square-summable with respect to the Haar measure 
of G. We use the L2-norm, define multiplication by convolution 

(5) fg(x) = ƒKy)g{y^x)dy, 

and set f*(x) ~f(x-l)e. Then it follows directly from elementary 
properties of Haar measure and convolution that A is an jff*-algebra, 
and so the above structure theorem is applicable. It should be re­
marked that this highly algebraic approach to the study of compact 
groups was initiated by Köthe [51 ]; however, he based his work on 
the algebra of continuous functions instead of on L2, and his results 
are not quite as satisfactory as those of Ambrose. 

The fact that A is an i?*-algebra contains the Peter-Weyl theorem 
and related facts. In order to see this, one has to show (among other 
things) that these particular JET*-algebras have simple components 
that are finite-dimensional. As indicated by Ambrose, this can be 
done by appealing to the fact that A is a completely continuous alge­
bra. However it is possible to deduce the finite-dimensionality with­
out using any further information from the group, except for some 
rudimentary integration, and thus we can arrive at the Peter-Weyl 
theorem without mentioning the words "completely continuous. " 
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The computation at the same time establishes the connection between 
the algebra A and the representations of G, the orthogonality rela­
tions, and so on. 

One proceeds as follows. Let e»v denote matric units for one of the 
simple components of A. In (5) set ƒ=«»•*, g — &kh # = l = t h e group 
identity. Then 

ea0) = I CikWekiiy-^dy = (eik, «/*) = dta, 

the last equality following from (4). Next define h by h(x) ^e^xy); 
it is easy to see that h is in the right ideal generated by e^, say 
h~ ^kdkeik. On setting x = 1 we obtain e^iy) =a: ^akbih—otai. Hence 

(6) eij(xy) = a"1 ]T) eik(x)ek,{y). 
k 

Set y=x"*1, i=j~l in (6) and integrate over the group (the total 
measure is assumed to be unity). 

(7) a = or1 ^2 (e1Je, en). 
k 

From (7) it follows that the sum on k must be finite, and hence that 
the matrix algebra must be finite-dimensional; in fact a is precisely 
the degree of the matrices. Equation (6) shows that x—tcrHifa) is a 
unitary representation of G, which one proves to be irreducible by 
standard methods. This substantially establishes the Peter-Weyl 
theorem and its attendant facts. 

12. Group algebras. Let G be a locally compact group and A the 
Li-algebra of G, that is, the algebra of all complex functions summable 
with respect to the left Haar measure of G, with convolution as 
multiplication. The investigation of these Banach algebras is a subject 
of considerable current interest, which promises to produce results of 
first-rate importance. 

It is appropriate to begin the discussion with the theorem that A 
is semi-simple. Segal [69] proves this neatly as follows. He remarks 
that any self-ad joint algebra of bounded operators on Hubert space 
is semi-simple; this is a direct corollary of the spectral theorem, or 
rather of that fragment of it which asserts that a bounded self-adjoint 
operator with only 0 in its spectrum is necessarily 0. The result then 
follows from the fact that A is faithfully represented by operators on 
L2(G). In certain cases Segal proves that the intersection of the 
regular maximal two-sided ideals is 0; this is a statement which is 



822 IRVING KAPLANSKY [September 

stronger than semi-simplicity. Raikov [66] has given a different proof 
of the semi-simplicity of A. 

This semi-simplicity can be used to extablish the existence of a 
complete set of irreducible representations of G by operators on 
Banach spaces, called ^-representations in [69]. If G is compact or 
abelian, these ^-representations are finite-dimensional and hence 
similar to unitary representations. In the general case it is not known 
whether the jB-representations are similar to unitary representations 
on Hubert space; lack of information on this point is one of the ob­
stacles impeding further progress on the structure of the Li-algebra. 
It has been proved [28], [70 ] that G has a complete set of irreducible 
unitary representations. In the latter reference the proof is carried 
out by regarding A as an algebra of operators on L2(G) and taking 
the uniform closure. 

We turn now to the case where A is commutative (which is true if 
and only if G is), and we shall briefly discuss ideal theory in A. Let 
19eA be a closed ideal in A. We first raise the question: is i* contained 
in a regular maximal ideal? This is immediate if A has a unit—which 
is true if and only if G is discrete. This easy result, plus the informa­
tion that the maximal ideals correspond precisely to the characters of 
G, constitutes a generalization of Wiener's theorem on the reciprocal 
of an absolutely convergent trigonometric series. Even if A does not 
have a unit, it is still true that I can be embedded in a regular maximal 
ideal, although it requires a fair amount of proof—cf. [69] and 
[30]. It should be noted that the standard process of adjoining a unit 
does not resolve the difficulty, and in fact it is technically preferable 
not to adjoin a unit. In the case where G is the group of real numbers, 
this is the theorem of Wiener on spanning A by translates of a func­
tion whose Fourier transform does not vanish. 

The question just raised might have been paraphrased as follows: 
is A — I a radical ring (for only then would it be impossible to embed 
ƒ in a regular maximal ideal) ? A more far-reaching question suggests 
itself: is A—I even semi-simple? Even for specific groups like the 
integers or reals, this is still an open question. For special choices of the 
ideal JT, it has been answered affirmatively in [18] and [69], and these 
partial results are generalizations of Tauberian theorems of Wiener 
and Pitt. 

Such is the state of our knowledge in the commutative case. In the 
noncommutative case there are as yet few results concerning L\(G) 
worth quoting. An attack in a different direction has been made by 
Ambrose [3] who proposes to study L*(G). This is not an algebra 
since it is not closed under convolution, but in compensation for this 
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difficulty one has the availability of Hilbert space techniques. A 
somewhat similar program has been announced by Mautner [57]. 
Under the assumption that G is separable, he decomposes unitary 
representations of G, and in particular the regular representation, 
obtaining an analogue of Plancherel's theorem. The decomposition is 
based on a theorem of von Neumann concerning the expression of a 
ring of operators as a direct integral of irreducible rings. 
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