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1. Introduction. The only solution of the homogeneous differential 
system 

(i) ^ M O l - o . 

(2) /(0 + ) - ƒ ( + oo) = 0 

is /(/)=s=0. This may be seen by observing that none of the funda­
mental solutions of equation (1), tn (w=—fe, — fe+1, • • • > ft —2), 
satisfies the boundary conditions (2). We now replace equation (1) 
by another of infinite order, retaining the boundary conditions (2), 
and investigate the possibility of a nonvanishing solution. We let k be­
come infinite in equation (1) after introduction of a factor. Set 

(3) £*.«[ƒ(*)] - — ['*ƒ(')] 
U W J * ! (*-2)1 dt™~1 l J J 

and consider the system 

(4) lim L M [ƒ(*)] = 0 , 0 < * < o o , 

with the boundary conditions (2). Since the differential operator (3) 
serves to invert the Stieltjes transform,1 

*(0 (5) / ( * ) - f 
•J o 

•dt, 
x + t 

lim .£*.,[ƒ(*)] - * ( 0 . 

it is clear that the only solution of the system (4), (2) of the form 
(5) must vanish identically. Accordingly if the limit (4) exists bound-
edly,2 for example, there is no nonvanishing solution of the system. 
However, we shall show that if the limit (4) merely exists at each 
point of the interval then there are many nonvanishing solutions of 
the system. One very simple solution is f(f) =J(1+J)~*2. We shall find 
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1 See The Laplace transform by D. V. Widder, Princeton University Press, 1946, p. 

345. 
* D. V. Widder, loc. cit. p. 373. 
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it convenient to make an exponential change of variable which will 
change equation (4) into 

l imZ>n( l ) 
n-+» k=l\ k2/ 

y(x) - o, 

where D indicates differentiation with respect to x. The system in 
question becomes 

(6) (sin irD)y(x) = 0, — oo < # < oo, 

(7) y ( - oo) = y(+ oo) - 0, 

and a nonvanishing solution is 

y(x) = e~x(l + e~xY2. 

2. Existence of a nonvanishing solution. 

THEOREM 1. The function 

* ( * ) -
(1 + *-)* 

satisfies the system (6), (7). 

To prove this let us introduce the following notation : 

1 
g(x) = 1 + e~* ' 

(2»+1)1 
Cn = 

n\n\ 

We shall show by induction that 

(8) En(D)g(x) - cn[h(x)]»+* 

This is true for w = 0 since gf(x)~h(x). Assume equation (8) true 
when n is replaced by n — 1 and differentiate both sides twice with 
respect to x, 

d2 , , (2n(2n+ l)«r<*+i>* n2e~nx ) 

dx2 W 6 W I (1 + <r*)2*+2 (1 + e—)*»ƒ 

If this equation is divided by n2 and subtracted from equation (8) for 
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w —1 we obtain 

r w „ w N «-* 2»(2n+l)«r<"+*>• 

(9) - cnh{x)»+\ 

By one more differentiation we have 

(10) En(D)h(x) - cn(n + 1)*(*)"*'(*). 

Since h(x) is an even function it is clear that En(D)h(x) vanishes at 
# = 0. For each x 5̂ 0 the right-hand side of equation (10) is the general 
term of a convergent series and hence tends to zero with n. The test 
ratio of the series is 

»->eo Cn— 1 \ fl / 
lim ( )*(*) - 4*(*), 

and this is clearly less than unity. Thus 

(sin irD)h(x) = 0 , — oo < x < oo. 

It is clear by inspection that ft( ± oo) =0. This proves the theorem. 

3. Derivatives of the solution. 

THEOREM 2. Every even derivative of the function h{x) of Theorem 1 
satisfies the system (6), (7). 

By equation (9) we have En(D)g™(x) ~cnD*>h(x)n+\ p = 0,1,2, • • >. 
Without computing the pth derivative of h(x)n+l completely we can 
obtain an upper bound for it as follows. It is clear that 

(11) D'hix)"*1 = D* 

where 

(12) *»,(*)-£*„*«-»/»-

Here the coefficients cp,y need not be determined. If 

| cpj\ Û AvCv%h j = 0, 1, • • • , p, 

then 

(13) | <*,(*) | Û Ap(e*i* + <r*'2)*, - oo < % < oo. 
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By differentiation of equation (12) we have 

(14) | ai (*) | g A, — (e*» + e~*i*)*. 

By induction on p we obtain by differentiating equation (11) that 

<Vn(*) - ai (*)(e*'« + e-*>2) - 2~\2n + f + 2)aP(x)(e'ii - «-*'*)• 

Then inequalities (13) and (14) give 

| «*•!(*) \*A,(n + p + l)(e*/s + «-*/*)»+» 

or 

A^+i = (» + # + 1)AP. 

For p — 0, ap(x) = l, and 4̂o = l- Hence 

(» + »)! 
* ~ »! 

and 

(15) 

| «•(!>)*<*>(*) | £ fr(f> + * + 1 ) ' [*(*)]•+». 
w! 

As in §2 the right-hand side of inequality (IS) tends to zero with i/n 
for each X9*0. Moreover if p is even, the left-hand side is an odd 
function and consequently vanishes at the origin. Hence h(p)(x) satis­
fies equation (6) for even p. 

Since 

(16) *(P>(aî) = E ° W P ) ( * > - coDp[Kx)l 
| *<*>(*) | £ co*!*(*)t 

it follows that ft(p)(#) vanishes at ± oo, and the theorem is proved. 
4. Further solutions. We can now obtain a very large class of 

solutions of the system (6), (7). 

THEOREM 3. If the f unction 
00 

f(w) = £ akWk 

is an even function of order one and minimal type and if h(x) is the 
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function of Theorem 1, then the function 

F(x) = J <**&<*>(*) 
*=o 

satisfies the system (6), (7). 

Let €0, €i, • • • be a sequence of complex numbers tending to zero. 
Then the most general function of order one and minimal type takes 
the form8 

f M = 2-, —77~ w • 

Since f(w) is even, €* = 0 for even k. Clearly F(x) is also even, and 
En(D)F{x) is odd for each w, and vanishes at the origin. That is, 
F(x) satisfies equation (6) at x = 0. 

If X9*0 we may determine a positive number € less than unity and 
such that 

(17) 4<r* < (1 + e~*)2(l - «). 

Now determine an integer iV so large that |€*|^€ when k^N. 
We have at once that 

h 

(18) En(D)F(x) = £ -^En(P)A<*>(*). 

Inequality (IS) is sufficient to establish the uniform convergence of 
the series (18) and thus to validate the term-by-term differentiation. 
By Theorem 2 it is clear that 

lim £ - £ £.(/>)*<*>(*) =0. 

Moreover, by inequality (IS) 

D-^£n(D)A<*>(*) \U M«+i V ( » + * + ! ) ' 6 
cn[h(.x)]n+1 2 - ; TT 

(1 - € ) * + 2 L " 

But this dominating function is again the general term of a series 
8 See, for example, L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 1931, p 

235. 
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with test ratio 

,. Cn+i h(x) 4h(x) 
lim = • 
n->» Cn 1 — € 1 — € 

This ratio is less than 1 by (17), so that F(x) satisfies (6) for all x. 
Finally, from inequality (16) 

\F(X)\ S C 0 * ( * ) E | « * K 
k=Q 

and F(x) also satisfies equations (7). This completes the proof. 

5. A counter-example. We can now show that the result of Theorem 
3 is best possible in a certain sense. 

THEOREM 4. The word "minimal" in Theorem 3 cannot be replaced 
by the word "normal". 

To prove this it will be sufficient to exhibit an even entire function 
00 

f(w) = X a*wk 

k=Q 

of order 1 and type / (arbitrarily small) such that the function 

F(x) - £ <***<*>(*) 
k=Q 

will fail to satisfy equation (6) for some x. We choose a* = (#)*/£! 
for even k and aje — 0 for odd k. Then ƒ(w) =cos (tw) is a function with 
the properties desired. Moreover the function F(x) becomes 

h(x + it) + h(x - it) 
F(x) = 7 = Re h(x + it). 

Simple computations give 

En(D)F(x) 

6 t[(e*'2 + e**'2) cos 0/2) + i(e*'2 - <r*>2) sin (*/2)]2w+8j ' 

If we define an argument a and a modulus X as follows, 

ex/2 _ e~*/2 J 
tan a = tan — ; X2 = ex + e~x + 2 cos t 

ex/2 + e -x /2 2 
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equation (19) becomes 

\2n+zEn(D)F(x) 

(20) {n+1)Cn 

( (e*'2 - ér*'2) cos (f/2) + W + <r*/2) sin (fi/2)\ 
= Re < ' > . 

( eia(2n+Z) j 
If we choose x so near zero that X <2, it is clear that X2n+3/[(w+l)cn] 
approaches zero with 1/n. If in addition we choose x so near zero 
that a = (27r)/iV, where N is an odd integer (which is seen to be 
possible from the definition of a), then the right-hand side of equa­
tion (20) reduces to 

(ex/2 _ e-*/2) c o s (j/2) ^ 0 

for infinitely many values of n. Hence for such x 

lim En(P)F(x) * 0, 
»- •«© 

and our result is established. 
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