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let x be fixed, - 1 < * < 1 , We obtain for the roots of the polynomial 
(19) in s the condition 

1 + xz 
(20) *, 

(1 + 2ss + s2)1'2 

where x9 denotes a root of Pn . Or 

,_ .N x(x9 - 1) ± Xy((l - xv)(l - x )) 
(21) s == j j ; 

x2 — #; 

thus the roots in z are all real. Using the trivial inequality (16) the 
assertion follows. 
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In discussing eigenvalues and eigenfunctions of the Sturm-Liou-
ville differential equation 

L(u) + \pu « 0, L(u) = (pu')' - qu> 

with 

p(x) ^ m > 0 \ 

q(x) à 0 > for a ^ x S b, and for some «, 0, and m, 

18 ^ p(*0 è û > o ) 

and the boundary conditions 

u(a) = Ciw(ft), «'(#) — c2u
f(b)f c\C%p(a) = ^(6), 

we find that we can represent our eigenfunctions as unit normals in 
the directions of the principal axes of an ellipsoid in function space. 
We define our function space F as the set of all functions v(x), 
aSx=*b, which satisfy the boundary conditions of the Sturm-Liou-
ville equation. The origin of our space will be the function u(x) =0. 
We can now metrize F by defining our inner product (#, v) for 
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«G-Pt vÇiF, as 

(u, v) = I puvdx. 

Also | u | « ((w, w))1/2, and « is orthogonal to v if and only if (u, v) » 0. 
Let me now define 

D(uf v) = I (£#V + quv)dx. 

Notice £>0, u) ~f*a(p(u')2+qu2)dx^0. 
In terms of Z>, I shall define an infinite-dimensional ellipsoid in 

our function space. Take a unit vector in F, that is, (u, u) = l. On 
this, lay off a length r=»l/(J9(w, u))112. The set of points of F thus 
determined for all unit vectors of F constitutes the ellipsoid. It can 
be shown that the unit normals in the directions of the principal axes 
constitute a complete orthonormal set of eigenfunctions. Further­
more, if we arrange this set such that U\ is the unit vector in the di­
rection of the longest principal axis, «2 the unit vector in the direc­
tion of the next longest principal axis, and so on, then Xi=J9(«i, Ui), 
\%=D(u%, #2), • • • constitute an increasing set of eigenvalues, X* being 
the eigenvalue of U{. 

To show that X»«n2 as w—>oo, we must define the wth principal 
axis un{x) independently of the previous n — 1 principal axes Ui(x)f 

i — 1,2, • • • , w — 1. This is customarily done in the following manner: 
Take a set of w —1 linearly independent vectors of F, vu % > • • • , 

Un-ii through the origin and consider all unit vectors u ±.Vi, 
i = l, 2, 3, • • • , w — 1. Hence (u, w) = l, (w, t><)=0. Let min D(u, u) 
=ƒ(*>*•). Then max ƒ fa)- Xn. 

The way I define Xn runs as follows: 
Let vu Vz, • • • , vn be a set of n linearly independent vectors of F. 

Consider 

U = C1V1 + C2V2 + • • • + CnVn. 

Then we normalize u getting u/\u\. It is easy to see that D(u/\ u\, 
u/\u\)=D(u, u)/(u, u). Now let g(t;<)=max D(«, u)/(ut u) for all 
u as defined above. Then 

min g(vi) = Xn. 

To prove this, let Vi = Ui, for i***lt 2, • • • , n. Then 

(W, U) - (X) Wit 2 Wi) = Z) CiCi{Uiy Uj) « X Ct-, 
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since X»SXn for i = l , 2, • • • , w — 1. Hence g(w^)^Xn. How­
ever, if c»=0, for i = l, 2, • • • , n — 1, cn = l, then u = un, and hence 
-D(w, u)/(uy u) =Xn, g(w») =Xn. To complete the proof I must show 
that for all vif g(vi) ^Xn . 

Let U — C1V1+C2V2+ • • • +cnvn be such that w ± w» for i = l, • • • , 
n — 1, that is, (w, «<) = 0 = ci(wt-, Vi)+ • • • +Cn(^*fln). This is always 
possible since I have n — 1 equations in n unknowns. Now by the 
definition of un, for all vectors u J~Ui, i = l, 2, • • • , w — 1 , 

Xn = P(wn, un) g 7- " 
(«, w) 

Hence g(vi) =max D(w, u)/(u, u) èXn . 
With this definition, we can now develop inequalities for the eigen­

values. Consider 

(1) CM') ' - ?i« + *P& = 0» 

(2) (#a*0' ~ $W + MP2W = 0 

with 

pi(%) â ^2(^), #i(ff) =£ &(%)t Pi(#) è P2(#) for a ^ » ^ J, 

and with both equations satisfying similar boundary conditions. 
Denoting the eigenvalues of (1) by 

Xi, X2, X3, • • • 

and those of (2) by 

Mi» M2, Ms, • * • , 

we shall prove that Xn^Mn for » = 1, 2, • • 
Let vu V2, • • • , vn be a fixed set of n independent vectors. Let 

w = Citfi+ • • • +cnvn- For (1) the normalized u is u/\u\i and 
Di(u/\u\ifu/\u\i)=Di(u,u)/(u, u)u gi(»<)=max Dx(u, u)/(u, u)u 
For (2) the normalized u is u/\ u\ 2, and gi(vi) =max D^u^ u)/(u, u)%. 
Since Di(u, u)=J{pi{uf)2JrqiU2)dxi Dz(u, u)=f(p2(u')2+q2U2)dx, it 
follows that D2(w, u)^Di(u, u). Since (u, u)i — Jp\uHxy (u, u)% 
=fp2U2dx, it follows that (w, w)i^(w, u)%. Hence Dz(u, u)/(u, w)2 

^ i ( w , «) / (« , «)i, g2(»<) ègi(*>»). Since min &(»<) =Mn, and min gi(^) 
Xn, then Mn*=Xn. 

With these preliminaries, the proof about the asymptotic behavior 
of Xn is standard. 
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An example of the use of this new definition of Xn is that it affords 
a method of obtaining upper bounds and approximations to Xn. 

Take Vi~Vi(x, au a% • • • , ar), with r parameters, such that Vi for 
i = 1, 2, • • • , n satisfies the boundary conditions, that is, it is a vector 
in function space. Then form 

U « CiVi + ' • • + CnVn, 

and normalize u, getting 

We can now calculate max D(u, u), for 

D(u, u) = ] £ CiCjDfyi, vi), 

and hence we get 

à[]C CiCjDfyi, vi)] d [23 ^ / ( ^ *>?) ] 
= <r , 

dd dd 

which together with the equation 

] £ CiCf(Vit Vj) = 1 

determine the £,-. 
Hence max J9(w, «) =h(ai, a2, • • • , ar) ^Xn. Hence to approximate 

Xw, we minimize the function h(ai, a*, • • • , ar). Good approximations 
depend of course on the choice of the original »,-. It is to be noticed 
that this is just an extension of the ordinary method of computing Xo. 
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