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The bob of a spherical pendulum (or particle on a smooth sphere 
under gravity) oscillates between two levels, and the change of 
azimuth in passing from the lower to the higher level, or vice versa, 
is the same for all such passages during a single motion. Using the 
language of orbit theory, we shall refer to this change of azimuth as 
the apsidal angle. It is a function of the two constants of the motion, 
total energy and angular momentum, but the remarkable fact is 
that the apsidal angle a always satisfies the inequalities1 

(1) T/2 <a < T. 

The purpose of the present note is not to add to the theory of the 
spherical pendulum, but rather to place the problem in a more 
general setting. Consider a particle of unit mass which moves on a 
surface of revolution 2 under the action of a conservative field of 
force for which the potential energy is independent of azimuth. 

Let A be the axis of 2. Then S is determined completely by the 
section C of 2 by a half-plane terminated by A. Since the particle 
cannot pass from a portion of S to a disconnected portion of 2, we 
may suppose C to be a single connected curve. 

Several cases present themselves: 
(i) C is an open curve with both ends on A (2 homeomorphic to a 

sphere). 
(ii) C is an open curve with one end on A and the other end at 

infinity (2 homeomorphic to a paraboloid of revolution). 
(iii) C is an open curve with both ends at infinity (2 homeomorphic 

to a cylinder). 
(iv) C is a closed curve which does not meet A (2 homeomorphic 

to a torus). 
In any one of these cases, we assign coordinates Rt <£, where R is 

arc length measured along C and <t> is the azimuthal angle. The range 
of 4> is taken to be (— oo, oo), an increase of 2TT in <£ leading us back 
to the same point. The range of R depends on the type of C. In case 
(i), the range of R is finite; in case (ii), the range may be taken as 
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1 For references to earlier work, see P. Appell, Traité de mécanique rationnelle, 
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(0, oo); in case (iii), the range is (— oo, GO); in case (iv), the range 
is taken to be ( - c o , oo), an increase in R equal to the length of C 
leading us back to the same point. 

The line element of 2 may be written 

(2) da2 = dR2 + B{R)d<t>\ 

and the potential energy is V(R). At any point common to 2 and the 
axis A we have B(R) = 0. In case (iv) B and V are periodic functions 
of R, the period being the length of C We shall assume B and V to be 
of class C2 in all domains where the motion of the particle is considered. 

Although the dynamical system described above consists of a 
particle on a surface of revolution, it is clear that any results obtained 
will be available also for a conservative dynamical system with two 
degrees of freedom and one ignorable coordinate, the Lagrangian 
function being 

(3) L = 2^[A(R)R2 + B(R)4>*] - V(R). 

We shall, however, continue to refer to the system as if it consisted 
of a particle on a surface of revolution. 

According to Jacobi's principle of stationary action, the path of the 
particle, if moving with total energy £ , is a geodesic in a two-space 
with metric ds where 

(4) ds2 = (E - V)da2. 

Let us introduce instead of R a new coordinate r, defined by 

ƒ « 

the lower limit of integration being arbitrary. Then (4) becomes, by 
use of (2) and (5), 

(6) ds2 = dr2 + G(r)d<l>2, 

where 

(7) G(r) - [E-V{R)]B(R). 

The form (6) may itself be regarded as the line element of a surface 
of revolution 5. Accordingly the study of particle paths on a surface 
of revolution S reduces to the study of geodesies on another surface of 
revolution S.2 

2 In general, S cannot be imbedded in a Euclidean 3-space. Since we shall be con­
cerned solely with the intrinsic properties of S, that fact is not important for the pur­
poses of the present paper. 
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The geodesies for (6) satisfy the Lagrangian equations 

d dw dw d dw dw 

ds dr' dr ~~ ' ds d<f>' d<f> ~" ' 

where the prime means d/ds and 

(9) w = 2 - l [ r " + G ( r ) * ' f ] . 

Since <j> is ignorable, we have the first integral 

(io) Gif)*' = *, 

a constant analogous to the constant of angular momentum. Equa­
tion (10) replaces the second of (8) ; instead of the first of (8), we may 
use the first integral 

(11) r / 2 + G ( r ) « , 2 = 1. 

Elimination of 5 between (10) and (11) gives 

(12) (dr/dj)* « G(G - h*)/h*. 

The two constants, E and hf are involved in the theory, but they 
play very different roles. The constant E is implicit in the line element 
(6), through G, but the line element does not involve h. Since 

(13) E = T + V, 

where T is the kinetic energy, and T cannot be negative, we see 
that E is greater than or equal to V a t any point in the path of the 
particle. This places on E the condition 

(14) E §: minimum of V on 2). 

The constant h must satisfy a more exacting inequality. Since r ' 2 ^ 0 
and G(r)^0 by (7) and the positive definite character of (2), 

(15) Â2 g G(r) 

follows from (10) and (11), for all values of r on the particle path; 
this may also be seen directly from (12). 

The apsides of a particle path correspond to maximum and mini­
mum values of R, and the apsidal angle a is the increment in the 
azimuthal angle <j> in passing from minimum to maximum or from 
maximum to minimum.3 Since the transformation (5) is monotone, 

8 The surface of revolution is a particular case of the radial manifold, and radial 
apsides coincide with potential apsides; cf. J. L. Synge, Trans. Amer. Math. Soc. vol. 
34 (1932) pp. 481-522. 
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and <f> is not transformed in the passage from 2 to S, it follows that 
the apsidal distances (i?i, R2) for the particle path on 2 correspond by 
(5) to the apsidal distances (n., r*) for the corresponding geodesic on S, 
and the apsidal angles are equal. 

To find the apsidal distances, we put dr/d<f> = 0 in (12). We have 
then to consider the two equations G = 0 and G — &2 = 0. By (10), 
G = 0 implies h = 0, and so G = 0 implies G — &2 = 0. Consequently we 
have to consider only the equation 

(16) G = h\ 

However, the case h = 0 is singular, and we shall exclude it from 
further consideration. By (10), it implies 0 ' = O for values of r not 
making G = 0, and so the motion is along a meridian curve (simple 
pendulum motion for a spherical pendulum). 

If (16) has no roots, there are no apsides. To study the existence of 
apsides, let us regard E as assigned, so that the function G(r) is de­
termined. Oscillation between apsidal distances n , H (n <r*) will occur 
if, and only if, there exists a pair of roots of (16) : 

(17) G(ri) = h\ G(n) = h> (n < r8), 

with the inequality (IS) satisfied for all intermediate values of r: 

(18) G(r) ^ h2 ( f i ^ r g r%). 

The scheme for finding apsidal distances is then clear. The constant 
E being assigned, we consider the graph of G(r) versus r. Unless the 
graph shows a t least one relative maximum, a pair of apsidal dis­
tances cannot occur. Let us suppose that r = r0 gives a relative maxi­
mum, so that the derivative vanishes: 

(19) (dG/dr)r„ro - 0. 

We then draw a parallel to the r-axis below this maximum, cutting 
the curve of G{r) a t n and a t r2, with ri<ro<r2l and assign to h the 
value given by (17). Then there exists a geodesic with apsidal dis­
tances rlf r2, and, by (12), the apsidal angle is given by 

(20) a = f f "à* = h f ' [G(G - Â2)]-1 '2^. 

I t is interesting to note that if we had chosen h2 = G(r0) we would 
have obtained a circular geodesic (corresponding to the conical 
pendulum). This is easily seen from equations (8)-(12). In fact, 
any geodesic on S possessing two apsidal distances weaves in and out 
across a circular geodesic. 
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Let us now consider bounds for the apsidal angle a, assuming that 
in the range (n, r2) there is only one value ro satisfying (19). Then in 
each of the ranges (ri, r0), (r0, r2) G is a monotone function of r. 
We may write (20) in the form 

/

» fOSfQ 

[G(G~ W)]~u*\dr/dG\dG 

(21) + h f ' r° [G(G - A2)]-1'21 dr/dG | dG 

= h f °[G(G - A2)]-1/2!! dr/dG|! + | dr/dG|2]dG, 

where G0 = G(r0), and the subscripts 1 and 2 refer respectively to the 
ranges (n, r0) and (r0, r2). 

Consider now the ratio 

, x IdG/drl 
(22) ' ' (Go-G)1 '2 

in the range (ri, r2). As r approaches r0, this ratio has the limit 

( - 2d2G/dr2)1'2, 

evaluated at r = r0. Accordingly the ratio (22) is bounded above and 
below, and we may write 

(23) m S (Go - G)-1/21 dG/dr \£M (rx ^ r £ r«)f 

where m and If are in general functions of E and h. Equivalently, 

(24) Af-i(Go - G)-i/t g | dr/dG | £ «r^Go - G)"1'2 (ri S f S r*)-

We might have m = 0, in which case the upper bound is infinite. With 
the inequalities (24), equation (21) gives 

(25) M-1/ SaS nrxIt 

where 

(26) / = 2k f °[G(Go -G)(G- h^Y^dG. 

Changing the variable of integration by the transformation 

(27) G = h* cos2 6 + Go sin2 6, 

we get 
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ƒ> T / 2 

[1 + (Go/A2 - 1) sin2 e]-l'He, 
o 

and hence, since G0>A2, 

(29) 2TTÂG71/2 < I < 2TT. 

Substitution in (25) gives the following result: For motion on a surface 
of revolution S (or, equivalentlyy for a geodesic on a surface of revolution 
S with line element (6)), the apsidal angle a satisfies the inequalities 

(30) 27rM~1^G71/2 < a < lirnT1, 

where h is the constant of the first integral (10), Go is G(r0) where r0 

satisfies (19), and M, m are respectively upper and lower bounds of the 
ratio (22) in the range of oscillation (ri, r2), determined by G = h2. 

It is interesting to see what happens when the geodesic under 
consideration lies close to the circular geodesic r = r0. Then h2 ap­
proaches Go and the two bounds M and m approach the common 
value ( — 2d2G/dr2)~~1/2 evaluated at r0; we get in the limit 

(31) a = 2 T ( - 2d2G/dr2)-li2, 

evaluated at r0. This value is easily checked by differentiating (12), 
dividing by dr/dxf), and linearizing the resulting equation. 

Having transformed the problem of the apsidal angle for motion 
on a surface of revolution to that for geodesies on a surface of revolu­
tion, we can bring to bear on it well known results in differential 
geometry. Consider, on the surface of revolution 5, the triangle AOB 
the sides of which are geodesies. Let O be the pole of 5, that is, the 
point where it is met by the axis. Then OA and OB are meridians. 
Further, suppose that A and B are adjacent apsides on the geodesic 
AB, so that the angles ABO and BAO are right angles and AOB is 
the apsidal angle a. Then a is the excess of the angle sum over 7r, 
and so by the well known formula 

(32) a = f f KdS, 

where K is the Gaussian curvature of S for the metric (6) and the 
integration extends over the triangle AOB, dS being the element of 
area. 

The formula (32) brings an interesting fact to light. Consider 
the small oscillations of a spherical pendulum about the position of 
equilibrium. I t is known that the particle path is approximately a 
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central ellipse (a = 7r/2). Consider the triangle AOB as described 
above. To that triangle on S there corresponds on the sphere 2 a 
triangle which we may also call AOB; the sides A0 and OB are great 
circles joining 0 , the lowest point of the sphere 2 , to adjacent apsides 
A and B\ AB is the particle path between apsides. 

Now, for small oscillations, the area of the triangle AOB on 2 is 
small. The area of AOB on S is still smaller, since the factor E—V 
involved in passing from da2 to ds2 is small for small kinetic energy. 
How then can the integral in (32) have a finite value, approximately 
7r/2? The answer is to be found in K. For the metric (6), the circle 
V=E is singular, and the Gaussian curvature of 5 tends to infinity 
as we approach this circle. If we take the zero of potential energy 
at the lowest point of the sphere, that is, at the point 0, then small 
oscillations correspond to small values of E, and the radius of the 
circle V=E is small. But inside this circle, considered in S, the 
Gaussian curvature is great, in such a way that its greatness balances 
the smallness of the area of the circle. 

These considerations point to the desirability of the further in­
vestigation of the geometry of dynamical systems when the Jacobi 
metric (6) is used; this remark applies not merely to the simple 
symmetric case discussed, above, but to a general dynamical system. 
The locus V=E has an interesting geometry. I t is a null-domain, in 
the sense that the length of any curve drawn in it is zero. I t forms a 
barrier across which a geodesic cannot pass; in fact, geodesies ap­
proaching it are bent back sharply. Furthermore, on it the curvature 
becomes infinite. 

I t might seem that the reduction of the question of dynamical 
apsidal angles to the question of geodesic apsidal angles might yield 
some simple general bounds. So we ask: For the whole class of sur­
faces of revolution, do there exist upper and lower bounds for apsidal 
angles? We shall show that the answer is in the negative, by con­
structing models in which the apsidal angles pass any given bound. 
It is simplest to use limiting models with sharp edges; passage to the 
limit from smooth surfaces will not destroy the inequalities. 

Consider a long circular cylinder with flat ends, the pole 0 being 
the center of one end E. Consider a geodesic which consists in part 
of a chord of E, not a diameter. The midpoint of this chord is an 
apse; in fact, it is a point of minimum distance from 0. Pursuing the 
geodesic in one direction, it passes over the edge of £ , and winds 
round and round the curved sides of the cylinder. The azimuthal 
angle increases by 2w in each such revolution, and the next apse can­
not occur until the geodesic reaches the other end of the cylinder. 
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Obviously, by making the cylinder sufficiently long, we can make the 
apsidal angle as great as we please. 

To get a small apsidal angle, we take as our surface the two faces 
of a flat circular disk. The pole 0 is the center of one face E. Consider 
a geodesic consisting in part of a chord of E which subtends at 0 a 
small angle j8. The midpoint of the chord is an apse. Follow this 
geodesic in one direction over the edge of the disk and on to the other 
face E'. The chord on E' and the chord on E will make equal angles 
with the radius drawn from O to the point where the geodesic passes 
over the edge. The midpoint of the chord on E1 will also be an apse. 
The apsidal angle is a=j8, and can be made as small as we please 
by making ]3 sufficiently small. 

Consequently, for the whole class of surfaces of revolution, there 
is neither an upper nor a lower bound for the geodesic apsidal angle. 
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