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1. The geometric theorem. Let En denote an w-dimensional Eu­
clidean space. A set of points in En may constitute an En-\\ if so, it 
will be called a plane in En. We shall sometimes denote planes by 
pu p2i • • • • Also, if xi, • • • , Xn-i are linearly independent vectors 
emanating from a common point O in En, the plane through O and 
containing these vectors will be denoted by E{x\, • • • , #n-i). A plane 
divides En into two closed half-spaces each having the plane as bound­
ary, but otherwise having no points in common. If 5 is a point set in 
Eni a plane p is called a supporting plane of S if (1) S lies in one of 
the closed half-spaces determined by p, and (2) the distance between 
S and p is zero. 

THEOREM 1. Let S be a bounded and closed point set in En. Let O 
be a point of Eni and suppose that the set consisting of O and S does not 
lie in any plane. Then there exist n linearly independent vectors 
Xu • • • , %n emanating from 0, with terminal points Pi, • • • , Pw in 5, 
and n planes pi, • • • , pn satisfying the following conditions \ For each i 
(a) pi contains P,-; (b) pi is parallel to E(xi, • • • , #»-i, Xi+x, • • • , xn) ; 
(c) pi is a supporting plane of the set consisting of 0 and S. 

PROOF. Consider any n points Pi , • • • , Pn in 5. Let x% be the vector 
from 0 to Pi. Form the parallelepiped determined by the vectors 
Xi, • • • , xn. As a figure in En this parallelepiped has a certain content, 
which is a function of Pi , • • • , P n , say F(Pi, • • • , P n ) . Because of 
the hypothesis concerning 0 and 5, there is at least one choice of 
Pi, • • • , Pn for which the parallelepiped is nondegenerate ; V there­
fore assumes a positive value. Now F is a continuous function of the 
variables Pi , • • • , P n , each of which ranges over the compact set 5. 
I t follows tha t V assumes a positive absolute maximum value. 
Throughout the remainder of the proof we shall use Pi , • • • , PM 

to denote a set of points in S a t which V attains its absolute maxi­
mum. The fact that the maximum is positive then implies that the 
vectors xi, • • • , xH are linearly independent. 

Let pi be the plane through Pi parallel to E(#i, • • • , x»-i, 
Xi+i, • • • , #»).The parallelepiped of maximum content lies between 
these planes, each of a pair of opposite faces lying in one of the planes. 
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We have to prove that pi is a supporting plane of the set consisting 
of 0 and 5, that is (since 0 is not on pi), that 0 and any point of S 
both lie in the same one of the two closed half-spaces determined 
by pi. Suppose that for some point Q of 5 this were not the case. 
Consider the parallelepiped determined by the vectors 
OQ, Xi+i, • • • , xn. Its content would evidently be greater than that 
of the parallelepiped determined by xi, • • • , xn, in contradiction to 
the maximal property of the latter. For, the w-dimensional content 
of a parallelepiped is equal to the (w —1) -dimensional content of one 
of its faces multiplied by the distance between the plane of this face 
and that of the face opposite. The two parallelepipeds which we are 
comparing have a face through 0 in common, but the distance from 
0 to pi is less than the distance from 0 to the parallel plane through Q. 
The proof of Theorem 1 is now complete.1 

2. Normed linear spaces. Let X denote a real normed linear space.2 

In this section we shall prepare the way for the proof of the theorem 
in the next section by discussing certain matters pertaining to w-di-
mensional linear subspaces of X. Let F n denote such a subspace, and 
let yiy • • • , yn ben linearly independent elements of Fn , so that any y 
in Yn is uniquely representable in the form 

(2.1) y = e r y i + • • • + enyn. 

If in an w-dimensional Euclidean space En we introduce a rectangular 
coordinate system, we may cet up a correspondence between the ele­
ment y of Yn, as given by (2.1), and the point with coordinates 
(ei, • • • , en) in En. This correspondence is one-to-one and bicontinu-
ous. We state the following lemmas, leaving the proof of the first one 
to the reader. 

LEMMA 2.1. The points of En which correspond to the elements y of 
Ynfor which \\y\\^l form a bounded and closed convex set S which is 
symmetric about the origin. If \\y\\ < 1 , the corresponding point of En is 
an interior point of S. 

LEMMA 2.2. Let S be the set referred to in Lemma 2.1. Let Po be a 
point on the boundary of 5, and po a plane of support of S through Pe. 
Denote by p the plane parallel to po and through the origin of En. Let 
yo be the element of F„ corresponding to Po, and denote by M the set of 

1 The referee brought to my attention the fact that a theorem similar to Theorem 
1, for the special case in which S is a convex body with the point O as a center of sym­
metry, was announced by M. M. Day, in Bull. Amer. Math. Soc. Abstract 51-11-237. 

2 S. Banach, Théorie des opérations linéaires, Warsaw, 1932, p. 53. 
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elements of Yn corresponding to points of p. Then there exists a linear 
functional f Q defined on X with the properties (1) ||/0|| = 1 , (2) /o(yo) = 1, 
(3) fo(y) = 0 for each y in M. 

PROOF. Since po does not pass through the origin, it may be de­
scribed by an equation of the form a\ei+ • • • +a»e» = l . The points 
of p will then satisfy the equation axei+ • • • +anen = 0. By means 
of the correspondence (2.1) we define a linear functional $ 0 on Yn 

by the equation <l>o(y) = 0i0i+ • • • +anen. I t is easily proved, by using 
the last sentence of Lemma 2.1 and the fact that po is a supporting 
plane of 5, that |0o(y)| ^ 1 if I H I ^ l . Note that 0o(yo) = l. Conse­
quently, by the Hahn-Banach theorem,3 there exists a linear func­
tional fo defined on X, having ||/0|| = 1 , and coinciding with <j>o on Yn. 
This functional evidently meets the requirements of Lemma 2.2. 

3. Biorthogonal systems. Consider a real normed linear space X, 
and the conjugate space X* of linear functionals defined on X. A pair 
of ordered sets { } CX and {ƒ!, • • - , ƒ • } CX* is called 
a biorthogonal system if f%{x3) = 1 when i=j and fi(xj) = 0 when ij*j 
(*,j = l , 2 , • • • , n). If in addition \\x{\\ =| | / ; | | = 1 (* = 1, 2, • • • ,w),we 
shall call the pair of sets a biorthonormal system. 

THEOREM 2. Let Yn be an n-dimensional linear subspace of X. Then 
there exists a biorthonormal system {xi, • • • , xn}> {/i, • • • , / n } with 
Xif * ' • , Xn VYl 1n* 

PROOF. Introduce the mapping of Fw on En, and the set SQEn as 
defined in §2, Lemma 2.1. With 0 the origin in En, let Px , • • • , P n 

and pu • • • , pn be points and planes related to S as described in §1, 
Theorem 1 (here O and 5 do not lie in any plane). Let X\) * * * , Xf\ 
be the elements of Yn corresponding to Pi , • • • , Pw . The points Py, 
JT^i, are in the plane through 0 parallel to pi. By Lemma 2.2 it fol­
lows that there exists a linear functional ƒ,• such that ||/*|| = 1, ƒ*(#») = 1, 
fi(xj) = 0, jy^i. This completes the proof of the theorem. 
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8 Banach, loc. cit. Théorème 2, p. 55. 


