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ON LINEAR SECTIONS 
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Let %n{n^:2) be an w-dimensional Euclidean space, and let S be 
any set of points in ^ n . There exist a number of instances in which 
the following question has an interesting answer. Suppose a property 
A holds on each (w —1) -dimensional linear section Sn-i* of 5. What 
additional property B assumed to hold on each section 5n-i* will in­
sure that property A holds on 5? 

The following terminology is used. A continuum is a compact con­
nected set which may include the degenerate case of a single point. 
Also compactness includes closure. A generalized continuum is a set 
which is connected and closed. An (w — r)-dimensional linear section 
of a set 5 with an (n — r) -dimensional Euclidean hyperplane Ln-r is 
defined to be the set S-Ln-r- A subscript will always designate the 
dimensionality of the set. 

1. Theorems on closed, open and bounded sets. The following 
theorem illustrates the theory, and plays an important role in a suc­
ceeding theorem. I t is a case in which condition B is sufficient but 
not necessary. We shall always assume n*z2. 

THEOREM 1. Let S be any set in ^ n (n}£2). If each (n —1) -dimen­
sional linear section of S is connected and closed, then S is closed. 

PROOF. Suppose S is not closed. Then there exists a point p&S 
which is a limit point of S. Let L n- i be an (w — 1) -dimensional hyper­
plane containing p, such that S • Z,n_i 5̂  0. Since, by hypothesis, 
Sn-i^ S • Ln-i is closed, there exists an (n — 1)-dimensional closed 
cube Cn-iQLn-i, which contains p in its interior, and for which 
Cn-i - Sn-i = 0. Let Pn be an w-dimensional hyperprism passing through 
Cn-i, and perpendicular to Ln~i. Since p is a limit point of S which 
is not in 5, and since Sn-i is closed, there exists a sequence of points 
piÇzS-Pn, such that £*'€£Z,n_i, and such that pi—>p as i-*oo. Let Ln_2 

be any (n — 2)-dimensional hyperplane contained in Ln_i such that 
5-jLn_27^0, and such that Ln-2 • Cn-i = 0. Then there exists a sequence 
of hyperplanes L n - i i determined by Ln-2 and p\ By hypothesis each 
set S-Ln-i* is connected. Hence since £*£S-jLn-.i*-Pn, and since any 
point qÇîS-Ln^-Ln-i* is not in Pw, the connectedness of S-Z,n-i* im-
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plies that pi and q can be joined by a connected subset of S-Ln-i* 
which intersects the boundary of the prism, B(Pn). Hence let 
riÇLS'Ln^xi'B{Pn). Since the set {r{} is infinite, and since the 
prism Pn has a finite number of {n — 1)-dimensional plane faces, there 
exist an infinite subset of {r*}, namely {r^}, which lie on one face 
of Pn- Designate this face by jFn-i*, so that rv£^n-i*-£n-i*>. Further­
more since p*s—>pf as if—• <», the set {rli) lies on a bounded portion 
of Fn-x*. Hence since Zn-i*'—»£n-i as i;—»<*>, the set {rv} has a limit 
point r existing in £w-i. Since r ^ G ^ n - i * , 5 , and since by hypothesis 
SZ,n-i* is closed, r G S - 7 ^ * . Hence r G S . But f G W ' I ^ C C - i , 
which is a contradiction, since by construction C»-i-5»_i = 0. Thus 
the indirect proof is completed, and Theorem 1 is proved. 

COROLLARY 1.1. If each two-dimensional plane section of S is con­
nected and closed, then S is closed. 

COROLLARY 1.2. If each (n — 1) -dimensional linear section of S is a 
generalized continuum, then S is a generalized continuum. 

In Corollary 1.2, the connectedness of 5 is well known [6, p. 64]. l 

This second corollary is an illustration where no additional hypothe­
ses B are needed on linear sections in order to guarantee property A 
on S. 

THEOREM 2. Let S be any set in %* (n*z2). Suppose that relative to 
each (n — 1) -dimensional hyper plane Ln-i , the set 5-L n- i is an open one 
with a connected complement. Then S is open. 

PROOF. Let Sn-i* be any linear section determined by £n-i*. Since 
5n-i* is open in Ln-i*, the complement C(Sn-iO is closed in Ln-il* Since 
each linear set C(5w-i0 is then connected and closed, Theorem 1 im­
plies that C{S) is closed. Hence S is open. 

COROLLARY 2.1. Let S be any set in %.n (n^2). If relative to each 
two-dimensional plane Lé, the set SL^ is an open one with a connected 
complement, then S is open. 

The following theorem is one in which boundedness is the principal 
property to be established. Here again connectedness plays an im­
portant role. 

THEOREM 3. Let S be any set in %n ( n ^ 2 ) . If each (n —^-dimen­
sional linear section of S is bounded and connected, then S is bounded 
and connected. 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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PROOF. Choose pÇzS> and let £n-2 be a hyperplane containing the 
point p. Consider the family of hyperplanes L«_ia passing through 
Z,n_2. Let SnTO (w = l, 2, • • • ) be a set of spheres with centers at p 
of radii ra. 

Suppose that 5 is unbounded. Then there exists a sequence of 
points x*ÇzS (i = l, 2, • • • ) such that the distance 5(/>, #*)*-*°° 
as i—>oo. Let £*-.!* designate the member of Ln-i° for which 
tf'ÇLn-i*. Since />G5-Ln-i<Snw, and since, for any fixed value 
of m, ^ £ 5 * I » - i < - S n m (for sufficiently large values of i), the con­
nectedness of S-Ln-i* implies that £ and x* can be joined by a con­
nected subset of S-Ln-i* which intersects the boundary of Snw, 
B(§ n

w). Choose ym'iGS'Ln^ii-B(S nm). Since J3($ »w) is compact, there 
exists a convergent subsequence {ym,<*} which converges to a point 
ymGSnm, such that for the corresponding points #v, ô(p, x*i)—>«> 
as ij—>oo. Without loss of generality designate £w-i° to be the mem­
ber of Ln-i" such that ymÇzLn~i°. There exists an integer N such that 
when ij>N, x*> E.S - L^i —§n

w+l, and such that 5(pf #*/)-->oo as 
ij—><*>. Hence by the connectedness of S-Ln-i*i there exist points 
ym+1^65-Irn-i^-S(S» , , ,+1). Since y***i-+y", and since Ln-i*''-»£n-i0 

as i,~-»<*>, there exists a convergent subsequence of {ym+l«*/} which 
converges to a point ym+1G3-în-i0,Snm+1. Since the radius of §n

m 

is w, by induction it follows there exists a sequence ym&§'Ln~i0
9 such 

that 8(p, ym)—> 00 as m-~> 00. 
If SC£n-A Theorem 3 is obviously true. Hence, suppose 3GS 

—Ln_i°. Since Lw~i° divides ^ n into two half-spaces, namely ^ « + 

and 2V", suppose without loss of generality that g£2ln+. Choose a 
hyperplane -Ln-i+Cïln4* so that Ln-i4" is parallel to £«-i°, and such 
that q is not on Ln-i+ or between Ln-i+ and Lw~i°. Since ywGS-Ln-.i° 
there exists in any neighborhood of ym a point pmÇzSt such that pm 

and g are on opposite sides of Ln~i+. Join p* and g by a line Li*. 
Hence ii^Ln-i+ssr™ exists. Let Ln~2* CLn-i

+ be a hyperplane such 
that rw£jLn-2*, and such that Ln-2* is perpendicular to Li*. The line 
Li* and the subspace £n-2* determine a hyperplane Ln-i*. Since 
S-Z,w_i* is connected, and since q and pm lie on opposite sides of 
Ln_2* in £n-i*, we have 5-Ln-WO. Let jw65-In-2*. Since Ln-2* 
CIn-i+ , then-5mGin-i+. Since by construction ô(g, ;yw)~> 00 as w—> 00, 
£m can be chosen so that Ô(g, pm)--*oo as w-*<*>. Since as £w—><*> the 
line Li* approaches parallelism to £«~i+, 8(g, rm)—>oo as £m—><*>. 
Since £n-2* is perpendicular to Lx*, 5(g, sw) à 8(g, rm). Hence we have 
8(g, sm)—• « as w->oo. Since smG£n~2*C£n-i+ for all m, the set 
S-Zrn-i* is unbounded. This is â contradiction of hypothesis. Thus 5 
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is bounded. Since the connectedness of S is well known, Theorem 3 
is proved. 

2. A characterization of star-like sets. Aumann [ l ] has character­
ized compact convex sets by means of properties on linear sections. 
Also Liberman [4] has made another characterization by placing 
properties on the set itself and also on its supporting planes. The 
following theorem, while restricted to two-dimensional sections, 
yields, as far as it goes, a generalization of Aumann's result, for con­
vexity is replaced by the weaker concept of star-likeness, and bound-
edness of the set is removed. Note that in Theorem 5 no hypotheses 
are placed on the set S itself. The following definition is a standard 
one. Refer to Brunn [2]. 

DEFINITION. A set S is star-like with respect to a point # £ 5 if each 
straight line through a intersects S in a connected set. 

In order to characterize star-like sets by linear sections the follow­
ing definition of simply-connectedness in the plane is especially useful. 

DEFINITION. A connected plane set U is simply connected if each 
component of the complement of U is unbounded. 

THEOREM 4. A closed set S in %n (n*z3) is star4ike with respect to a 
point aÇ.S if and only if the following conditions hold. 

(1) Each two-dimensional linear section of S through the point a is 
a simply connected, generalized continuum. 

(2) For each point q&S, there exists a constant M > 0 , such that each 
two-dimensional linear section containing a and q contains a continuum 
joining a and q of diameter less than M. 

The necessity is immediate. In particular for condition (2) note 
that M can be any number greater than the distance ô(a, q). 

SUFFICIENCY PROOF. Suppose S is not a star with respect to the 
point a. Then since S is closed, there exist distinct points &£S, c £ S , 
such that ô(a, c) = ô(a, b) + ô(b, c)> and such that the open line seg­
ment L\ between b and c is not in S. Consider any three-dimensional 
hyperplane Lz such that LiQLz. Choose a coordinate system (#, y, z) 
in Lz so that Lx is contained in the x-axis. Let L2

e+<ZLz be an open 
half-plane with the #-axis as an axis, whose directed normal makes a 
directed angle 0 with the positive s-axis. Also suppose that 0 SB tkn-
Let L2

0 be the plane containing ZV*, and define L2
6~ ^L^ — T,^. 

Designate the component of the complement of S2
9 ^S-L2

B which 
contains L\ by C2

6. Since S2
d is a generalized continuum, the boundary 

of C2
9 is a connected set [6, p. 117]. By a theorem in the plane [5, 

p. 203; 6, p. 108], the set C2
6—Li is the sum of two mutually exclusive 
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open connected sets D2
e+ and IV~> and L\ is a subset of the boundary 

of each of these sets. The set D2
B+ corresponds to L2

e+ in the sense 
that for any point r£ELi, there exists a circle ftCW with center at r 
such that D2

e+-R2CL2
e+ and W - ' ^ C Ü " 

Hypotheses (1) and (2) imply that one and only one of the sets 
D2

6+ and D2
6~ is unbounded. Furthermore, the bounded set, say D2

e+, 
is of diameter less than M. This is due to the fact that D2

e+C.Q, 
where Q is a set enclosed by the closed line segment (a, c) and by the 
subcontinuum in S2

6 of diameter less than M which joins a and c. 
Clearly Q is of diameter less than M, whence D2

6+ is of diameter less 
than M, when it is bounded. 

Remark. The set of angles {a} for which D2
a+ is bounded is closed. 

To prove this let L2
ai—*L2

a as a»—•»«, and suppose D2
ai+ are bounded 

and that D2
a+ is unbounded. Choose points r £ I i , and sÇzD2

a+ such 
that the distance 5(r, s) >M. Since D2

a+ is arcwise connected, let 
A CD2

a+ be a simple arc joining r and s, so that A -S2
a = 0. Rotate A 

rigidly in L% about L\ so that AaiC.L2
ai is a congruent image of A. 

By virtue of the preceding paragraph, D2
ai+ are all of diameter less 

than M. Since A "< • S2
a»' T^O, since A ai • S2

ai are uniformly bounded, and 
since S is closed, we have A -S^T^O. This is a contradiction; hence 
the remark holds. In exactly the same way, the set of angles {/?} for 
which D2P~ is bounded is closed. Since the two closed sets {a} and 
{/?} cover the continuum 0 3*0 ̂ 7r, they have a value in common. 
Hence there exists a plane £2

0 , 0 ^ <j> ^7r, such that each A * - and 
A * + is bounded. But in this case C2+ would be bounded, and S2* 
would not be simply connected. Hence Theorem 4 is proved. 

COROLLARY 4.1. Let S be a compact set in <R.n (n^3). The set S is a 
star with respect to a point aÇzSif and only if condition (1) in Theorem 4 
holds. 

Compactness of S and condition (1) imply condition (2). Hence 
Corollary 4.1 follows from Theorem 4. 

THEOREM 5. Let S be any set in %* (n è 3). The set S is a closed con-
vex set if and only if conditions (1) and (2) in Theorem 4 hold for all 
points a £ S. 

The necessity is obvious. To prove the sufficiency note that Theo­
rem 1 implies that S is closed. Hence by Theorem 4, S is star-like 
with respect to all points of S. Thus by definition S is convex. 

3. A theorem in linear spaces. The results of Theorem 3 can be 
generalized to hold in a normed, linear, metric space M. A hyperplane 
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L in Vît is defined to be the set {x} which satisfies an equation 
f(x) = c, where ƒ(x) is a linear functional, and where c is a real con­
stant. A linear section of 5 with L is the set 5 L . 

THEOREM 6. Let S be any set in a normed linear metric space M. If 
each linear section of S is bounded and connected, then S is bounded and 
connected. 

PROOF. Consider two independent linear functionals fi(x) and fn(x) 
defined on Vît. Let T be a transformation of the type 

This transformation maps 5 in Vît into a set 52 in the plane fyt. Any 
linear section £2-undetermined by the lineZ»i,a£,+|8&«7 corresponds 
by T to the section SL where L is defined by afi(x)+(3f2(x)~y. 
Since T is linear (additive and continuous), and since by hypothesis 
SL is connected and bounded, it follows that the linear section £2-la 
is connected and bounded. Hence by Theorem 3 with w = 2, the set 
52 is bounded. Thus each functional fi(x) andf2(x) is bounded for all x 
in 5. Since fi(x) was an arbitrary linear functional, independent of 
f2(x), we have shown that all linear functionals defined on Vît are 
bounded on 5. Hence by a classical theorem of uniform boundedness 
[3], the set 5 is bounded. Since the connectedness is well known, 
Theorem 6 has been established. It should be noted that in light of 
Theorem 6 the proof for Theorem 3 need only have been given for 
n = 2 ; however, since the proof for n dimensions was not appreciably 
longer, an elementary proof independent of the abstract boundedness 
theorem seemed desirable. 

4. Concluding remarks. It should be observed that in Theorems 
1-3 one cannot delete connectedness entirely, for then the theorems 
in general are no longer true. Theorem 5 has a preferred form since 
no hypotheses are placed on 5 itself. Theorem 4 needs to be formu­
lated so as to hold for (n—r)-dimensional sections. This problem is 
still unsolved. It should be noticed in dealing with non-compact sets 
that the complement of an unbounded convex set or of an unbounded 
star need not be connected. Hence conditions on the complement 
necessary to yield a characterization take on a different form than 
those given by Aumann [l] . The author wishes to express his grati­
tude to his colleagues, Professor R. H. Sorgenfrey, Professor W. T. 
Puckett, and Professor M. Zorn who have made helpful suggestions. 
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THE SPACE Z> AND CONVEX TOPOLOGICAL RINGS 

RICHARD ARENS 

1. Introduction. The motive for investigating the class Lw of func­
tions belonging to all Z>-classes has no measure-theoretic origin: it 
was our desire to discover whether or not in every convex metric 
ring1 R one could find a system { U] of convex neighborhoods of 0 
having the property that / , g E U implies f g G U. We show here that 
Z,w has no proper convex open set U containing 0 and satisfying the 
relation UUQ U, thus supplying the desired counter-example. 

The significance of neighborhood systems of the type {If} de­
scribed above is made somewhat clearer by a proof that they insure 
the existence and continuity of entire functions (for example, the ex­
ponential function) on the topological ring R. 

Such neighborhood systems { U} are always present in rings of 
continuous real-valued functions over any space, provided that con­
vergence means uniform convergence on compact sets. 

We also consider the relation of L°°, L°, and the 2>-classes, since 
Lu does not seem ever to have been discussed as a topological and 
algebraic entity. 

2. Notation and elementary facts. Let us consider measurable func­
tions defined on [O, l ] . For ^ 1 we shall consistently employ the 
usual notation 

Received by the editors June 26, 1946. 
1 More precisely, metrizable, convex, complete topological linear algebra. For 

these one requires continuity in both ring operations and scalar multiplication. It 
will appear that L* has these properties. 


