
LATTICES, EQUIVALENCE RELATIONS, AND SUBGROUPS 

PHILIP M. WHITMAN 

1. Introduction. A lattice1 is a set of elements A, B, • • • together 
with a relation S defined between some or all pairs of the elements 
such that A SA for each A ; if A SB and B SA then A =J3; if A SB 
and BSC then A SC; and each pair of elements A and B have a 
least upper bound A^JB and a greatest lower bound AC\B. 

An equivalence relation2 R' is a relation ~ defined between some or 
all pairs of elements ("points") of a set €5 such that p~p for every 
point p\ if p~q then #^> ; if p~q. and g~r then £^ r . If more than 
one relation is under discussion, we may specify the one used at the 
moment by writing "p~q in R'.'y 

It is well known that the collection of all equivalence relations on 
a given set €> forms a lattice. Ore [4] has characterized lattices which 
are isomorphic to the lattice 8* of all equivalence relations on some 
set ©. One could go farther and ask what lattices are isomorphic to 
sublattices of 8*. Our answer to this is: any lattice is isomorphic to a 
sublattice of the lattice óf all equivalence relations on some set; more 
concisely, any lattice is a lattice of equivalence relations. 

Garrett Birkhoff has shown [l ] that any lattice of equivalence rela­
tions is isomorphic to a lattice of subgroups. Therefore the result 
stated in the previous paragraph implies: any lattice is isomorphic to 
a sublattice of the lattice of all subgroups of a suitable group. 

2. Outline. The first and larger part of the paper relates lattices 
and equivalence relations. Since the formal construction and proof in 
this part are somewhat lengthy and complicated, we first outline the 
main steps and indicate the motivation. 

A lattice 8 is given; we wish to show that there is some set <S, and 
some sublattice 8' of the lattice 8* of all equivalence relations on ©, 
such that 8 and 8' are isomorphic. 

We shall take © as the union of disjoint subsets 31, S3, • • • , one for 
each element A, B, • • • of 8. The equivalence relations A', B\ • • • 
corresponding to Ay J5, • • • must be chosen in such a manner that 
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1 Sometimes called a structure. For a thorough discussion of lattices, see Birkhoff 
[2]. Numbers in brackets refer to the references cited at the end of the paper. 

2 For a discussion of the relevant properties of equivalence relations (or congruence 
relations as they are sometimes called), see Birkhoff [1 ], Dubreil and Dubreil-Jacotin 
[3], or Ore [4], 
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ASB implies A'SB' and that (AUB)'=A'UB' and (AC\B)' 
~AT\B'\ this will make 8 ' a homomorphic image of 8. For an iso­
morphism, A' SB' must imply A SB. To insure this we propose that 
the subset 3t shall contain two points, 1(A) and r(A), such that 
1(A) ~r (A) in Bf if and only if A SB. The notations 1(A) and r(A) 
may be thought of as standing for "left end of 3P and "right end of 
St." Similarly 23 is to contain points 1(B) and r(B) which are equiva­
lent in Z' if and only if BSZ, and so on. However, for simplicity we 
shall devote our attention to 31 and the points and subsets thereof 
except when it becomes necessary to refer to S3, and so on. 

One's first thought might be to have 31 consist merely of 1(A) and 
r(A), and define B' insofar as it concerns points of 31 by specifying 
1(A)~r(A) in B' if and only if A SB. But suppose A S CUD though 
neither ASC nor ASD; by this definition one would have 1(A) and 
r(A) equivalent in (CUD)' but not in C' or D' and so not in CUD', 
contradicting CUD'*= (CUD)'. To overcome this difficulty we 
may enlarge 31 to include another point p(Cy D) and specify that 
l(A)~p(C, D) in C' and in (CUD)' while p(C, D)~r(A) in D' and 
in (CUD)'; we may think of 1(A) and p(C, D) as being in this respect 
images of 1(C) and r(C) and think of p(C, D) and r(A) as images of 
1(D) and r(D), with some images having been consolidated with each 
other or existing points for simplicity. 

Now however we have introduced somewhat the same difficulty 
all over again (one step farther toward the background) for suppose 
l(A)~p(C, D) in C' and CSEUF. Then necessarily C'S(EUF)' so 
we need l(A)~p(C, D) in (EUF)' = E'UF' yet we dare not (for in­
stance) have this relation automatically hold in E', for otherwise— 
since p(C, D)~r(A) in D'—we shall get l(A)~r(A) in E'UD'~ 
(EUD)' by transitivity and yet it need not be true that A S EUD. 
So we must in a manner similar to that of the previous paragraph 
introduce a new point between 1(A) and p(C, D). Evidently we can 
never stop this process a t any finite point without having the same 
trouble; we are driven to making an infinite succession of enlarge­
ments of 31 and hoping (or rather, proving) that their set union will 
have the desired properties though no one of them does. 

In the above discussion we put our attention on one pair of ele­
ments C and D with A S CUD. But of course if A S GUH then we 
must also introduce a point p(G, H) in a similar manner. But now we 
have difficulty in trying to prove (PC\Q) ' = PT\Q'. For it might be that 

(1) p(C, D) ~ 1(A) ~ p(G, H) in P' 

while 
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(2) p(C,D)~r(A)~p(G,H) in Q'. 

Thus in PT\Q', p(C, D)~p(G, H) but these need not be equivalent 
to either 1(A) or r(A), whereas in (Pf\Q)' by definition one or the 
other of the "paths" (1) or (2) must be followed. This trouble can 
be overcome by having not one but three images of /(C), r(C), 1(D), 
and so on. Tha t is, instead of the one new point p(C, D) we have 
p{(C, D), i = 0, 1, 2, 3, 4, 5, 6, where p°(C, D)=l(A) and £6(C, D) 
= r(A) and p\C, D)^pw(C, D) in C if i is even and in D' if i is 
odd. Also of course we must include additional points if C^E^JF, 
and so on, as discussed above. With this change, consider again the 
type of situation which was causing trouble; for instance 

p*(C, D) ~ pKC D) ~ p\C, D) ~ 1(A) 

~ PKG, H) ~ p\G, H) in P ' 

while 

p*{C, D) ~ p*(C, D) ~ p*(C, D) ~ r(A) ~ p*(G, H) 

~ £4(G, H) — ^3(G, H) ~ p2(G, H) in Q'. 

We propose to arrange matters so that pl(C, D)~pi+1(C, D) in J' 
will imply C^ J if i is even and D^J if i is odd. Then for instance 
p*(C, D)~p*(C, D) in Ç' will imply p\C, D)~pl(C, D) in <?' while 
pA(C, D)~p*(C, D) in <2' will imply £3(C, D)~p\C, D) in Ç' so that 
the possibility of the path (4) in Q' will imply that the equivalences 
(3) also hold in Q' and so also in PT\Q' as desired. 

We may describe the above construction in the terminology of elec­
tricity by saying that 1(A) and r(A) are connected by several wires 
or paths in parallel, one path for each pair of lattice elements C and 
D with A g C\JD. Each path has six filters connected in series, three 
of which pass current (permit equivalence) of frequency (relation) / ' 
if and only if C g J in the lattice, while the other three pass current 
in J' if and only if D g J'. The filters themselves are complex arrange­
ments of a similar structure. 

This gives a general idea of the procedure necessary; our task is 
now to make the construction precise and prove the existence of the 
properties that the construction is designed to provide. 

3. Construction3 of the sets and equivalence relations. A lattice 

8 If the given lattice is finite, Definitions 1-5 involve only finite processes; if the 
lattice is infinite, the word "construction* must be understood in a broader sense. But 
in both cases, Definitions 6-7 involve infinite processes. One hopes that a proof can 
be found which will involve only finite processes if the given lattice is finite. 
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S is given. We shall suppose that in addition to the lattice relation of 
inclusion, denoted ^ , there is also a relation of preceding and follow­
ing which linearly orders all elements of the lattice4 (if the lattice has 
a finite number of elements, the existence of such a relation is trivial ; 
otherwise we must invoke the axiom of choice). In Definitions 1-4 
reference is made to a pair of elements C and D of the lattice ; when 
writing the pair in these definitions we shall write first the one which 
"precedes" the other under the relation just discussed. 

DEFINITION 1. If A E8, denote by Hi the set of points^ p{(C, D) for 
i = 0, 1, 2, 3, 4, 5, 6 and all pairs C, D& such that A rg CU£>, where 

p«(C, D) - #o(G, fl) - 1(A) 

for all pairs C, D and G, H and likewise 

p*{C, D) = p*(Gy E) - r(A) 

but otherwise pi(C, D) 7*p3'(G} H) ifi ?*j or if C, D and G, H are distinct 
pairs. Similarly, all points of Sti are distinct from the points of 
»i, a , • • • . 

DEFINITION 2. The subset of 2Ii consisting of the two points pl(C, D) 
and pi+1(Ct D) is denoted (&, -Di)*; the subset of Sïi consisting of 1(A) 
and r(A) is denoted Ao- (Co, £><>)' is a null set. 

Obviously the subsets in Definition 2 overlap but this causes no 
trouble. 

We now proceed to define by induction sets 2t». Suppose that for 
each i (0^i<n) and each A& there has been defined a set % in 
such a manner that (for 1 ^i<n) if A SC^JD then SÏ* has subsets 
(Ci, Di)*J = 0, 1, • • • , 5, with (Ct-,1, Di-iYCiCt, £>;)>' and with the 
points of (Ct-, Di)}' in one-to-one correspondence with those of (£»-i 

4 This relation of "preceding" and "following" is not important to the argument 
and is merely for convenience in stating Definitions 1-4. 

8 Strictly speaking, this notation should also include a symbol to indicate that the 
points are in the set corresponding to A, as distinguished from the sets corresponding 
to B, C, • • • , but to simplify notation we shall fix our attention on the sets related to 
a fixed A and subsets thereof, and on equivalence relations A', B', • • • , only so far 
as they concern points of this set, unless otherwise indicated. We arrange that no 
point of the set corresponding to A shall be equivalent to any point of the sets corre­
sponding to B, C, • • * . It is permitted that C**D, D**A, and so on. It would be 
possible to reduce the number of points in such cases, but the present definition will 
minimize the number of separate cases to be considered in proofs. The symbol « when 
used between names of points means that the names stand for the same point; when 
used between names of lattice elements it means the names stand for the same element 
of the lattice. 
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if j is even and with those of 3X--i if j is odd, and with no overlapping 
except as required by these assumptions and Definition 2. Then for 
n > 1, we have the following definition. 

DEFINITION 3. $tn consists of 2In_i with each of the latter's subsets 
(Cn-i, Dn-i)>' augmented by as many points as are in En-i but not in 
S«-2 {if j is even) or in £)n-i but not in ©n-,2 {if j is odd), the augmented 
subsets being called {Cn, Dn)

J'. 

It is to be observed that Sïo and Sti satisfy the hypotheses, and that 
if the hypotheses hold then 2tn again has the same properties; thus 
the induction is effective. In view of the one-to-one correspondence 
specified, we may denote by q~l the point of <5n-i or £)n-.i correspond­
ing to g £ ( C n , Dn)'. Because of the overlapping of the subsets of 3li 
and hence of 2IW, [p2{C, D) ]""*, for instance, may be taken as either 
r{D) or /(C) depending on whether we are a t the moment concerned 
with p2{C, D) as a point of (Cn, A»)1 or as a point of {Cn, Dn)

2. 
Corresponding to each 23 £ 8 , a relation B\ is next defined so far 

as it concerns points of 31. 

DEFINITION 4. p~q in Biif there is some A £ 8 such that p, g£2ti 
and one of (5), (6) or (7) holds. 

(5) For some pair C, Z>£8 with A SCUD, p^p^C, D) and 
q~pi+1{C, D) or vice versa, and either 

(5a) i is even and CSB or 
(5b) i is odd and D SB. 
(6) P~q. 
(7) There exist points ffi, • • • , g* such that qi —p, qu—q, and for each 

i {i = 1, 2, • • • , k — 1) qi and g t+i satisfy the conditions of {5). 

Suppose that , for 1 Si <n and each B£8, equivalence relations J B / 
have been defined. Then by induction we define Bn' : 

DEFINITION 5. p~q in Bn
f for n>\ if p — q or there exist A& 

and points qi, 52, • • • , qk&Ün with qi~p, g& = S, and for each i 
(i = l, • • • , jfe — l) there exist j and C, .D£8 with A SCUD; qi, 
Si+i£(Cn , Dn)> and qcl~qi+rl in Bn-i'. 

I t is to be observed that B\ is an equivalence relation, and that if 
J3n_i' is an equivalence relation so is Bn', so the induction is effective. 
Having thus defined relations with subscripts 1, 2, • • • and sets 
with subscripts 0, 1, 2, • • • we now define ones without subscript, 
using 53 to denote set union. 

DEFINITION 6. 21 «I£o*<; © =L*n A St; (C, 2>)'-ET-i(C<, W 
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DEFINITION 7. p~q in B' if f or some nt p~q in Bn'. 

That B' as thus defined is an equivalence relation will appear 
shortly (Lemma 3). 

DEFINITION 8. A point s G Hi is between points py g G 91 if for some 
C and D, sÇ±(C, D)\ pE(C, D)\ and g G ( C D)k with j<i<k or 
k<i<j, orifk^j + 1 ands=pk(CtD), orifj = k + l and s=*p>'(C} D), 
provided in all cases that p, q, and s are distinct. 

For example, px(C, D) is between p2(C, D) and p°(C, D), for we 
may take i = l, j = 2, and k~0. Likewise ph(C, D) is between pz(C, D) 
and r(A), for we may take i = 4, j = 3 , and & = 5 since ph(C, D) be­
longs to (C, DY as well as to (C, -D)5. In fact, "between" means just 
what its name implies. One should emphasize the restriction in the 
definition that 5 must be not only in 31 but indeed in 2li; otherwise 
only a partial ordering would be possible. 

4. Properties of 8'. I t is required that the equivalence relations 
Ai', B', • • • form a lattice 8 ' isomorphic to the given lattice 8. To 
prove tha t this requirement is satisfied, we must first examine in some 
detail the consequences of the above definitions, with attention to 
how it is possible to have p~q. 

LEMMA 1. If A^B then 1(A) ~r (A) in Bx'. 

PROOF. Take B~C=*D in Definitions 1 and 4. Then in i V , 

1(A) ~ p\C, D) ~ p2 (C, D) ~ p*(C, D) ~ p4(C, D) ~ p*(C, D) ~ r(A) 

by (5) so l(A)~r(A) in Bx' by (7). 

LEMMA 2. If p~q in Bm' then p~q in Bn' for m^n and p~q in 23'# 

PROOF. The case m = nis trivial. 
If m = 1 but n > 1, we proceed by induction on n ; suppose the lemma 

is true for n<v and we wish to prove it true for n~v. If p~q in B\ 
then by Definition 4 there exist A G 8 and gi, • • • , g&GSIi with g i=p , 
qk — qj and gi^gi+i by (5), or else p~q. If p~q they are equivalent 
in Bn

r by Definition 5, so suppose the other alternative holds. Now 
if g ,~g t + i by (Sa) then C£B; by Lemma 1, 1(C)~r(C) in JBI'. By 
induction, l(C)~r(C) in J3„_i'. By similar reasoning, if the equivalence 
in B\ is by (5b) then l(D)~r(D) in -B„_i', so for all i, gr1^,g»+i""1 in 
Bv^\\ hence p~q in Bv' as desired, by Definition 5. 

If w > l , we proceed by induction on m\ suppose p~q in J3m '. By 
Definition 5 there exist -4G8 and glf • • • , g^G?lm with g»~1^/gt+i"~1 

in Bm-,i' (as above, the case p — q is trivial). But then by induction 
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on m, q.C1~(li+i~1 in JB,_i', for all i, so by Definition 5, p~q in B/ 
as desired. 

That the equivalence also holds in B' follows from Definition 7. 

LEMMA 3. B' is an equivalence relation. 

PROOF. We must show that B' has the properties stated in §1. 
Suppose first that p — q. Then p and q are in 2t and hence in %n for 
some A and n, by Definition 6; by Definition 5, p~q in Bn' so, by 
Definition 7, p~q in B' as desired. Suppose next that p~q in B'\ 
then p~q in Bn' for some n, by Definition 7; since Bn

f is an equiva­
lence relation, q~p in 5 / so q^p in 5 ' , as desired. Suppose lastly 
that p~q~r in B'\ then ^ ^ Z in Bn' for some # and q~r in 5 m ' for 
some m; by Lemma 2, p~q~r in -BmaX(W,^)/ so £ ^ r in that relation 
which is known to be an equivalence relation; hence p~r in B' as 
desired. Thus B' has all the properties required of an equivalence 
relation. 

LEMMA 4. Ifp~q in Bn
r then there exist A £ 8 and si, s%, • • • , s* £ H n 

swcfe /i to si = £ , Sk~q, s*£3Ii (i ^ 1, fe) araZ /Aa/ /Ae $ef o/ 5» is minimal 
(that is, none can be omitted without violating the requirements placed 
on them) and that either n = l and Si~Si+i by (5) for all i (i = l, • • • , 
k — 1) or else n>\ and Si and Si+\for alii (i = 1, • • • , k — 1) satisfy the 
requirements imposed on g» and q%+i in Definition 5. 

Note. By Definitions 4 and 5 there exist points g* with these proper­
ties except g»£2ti, i 5^1, & (in those definitions a priori only <Zt£3In), 
and minimality. Minimality, can easily be attained since the number 
of q% is finite, but it is more difficult to show that we can take s»£3li, 
i 7*1, k; that is, Si=p"(C, D) for some v, C, and D depending on i. I t 
may also be remarked that by virtue of the requirement that Si~Si+i 
by (5) or Definition S—more precisely, by (5) or certain conditions 
stated in Definition S—it follows that Si and Si+i must be in the same 
subset (C, D)v of 9t, for both in (5) and Definition 5 this is required. 
For l<i^k — 2, this fact and the requirement SiESIi, i TA\, k, mean 
that Si=p9(C, D) and either si+1^pv+1(C, D) or Si+i=pv~l(C, D) for 
some v. 

PROOF. If w = l, the conclusion follows immediately from Defini­
tion 4 ; minimality can obviously be attained since only a finite num­
ber of points enter into (7). 

Now proceed by induction on n; suppose p~q in Bn
f and the lemma 

is known to be true for smaller values of the subscript. By Definition 5 
there exist points qi = Si with all the desired properties except minimal­
ity and the requirement Si E 2li f or i 5̂  1, k. Suppose q{ (£ Six and i V 1, k ; 
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we shall show that & can be omitted. But now in Definition 5, q% 
and qi+i must be in the same subset of 21, and qr1^^qi+r'1 in Bn-i' 
(again omitting the trivial case p^q); likewise qi and < _̂i are in the 
same subset and q^^^^qr1 in jBn_i'. By Definitions 1,2, and 3,#; can 
be in two subsets of 21 only if qi=pj(C, D) for some j , but then q* is 
in 2ïi as desired. Otherwise, qi is in only one subset, and this one 
must also contain q^i and q^i and qi-j~l~qcl~qi+i~l in J3w_.i'. Hence 
qi-fi^qi+i"1 in J3w_i' so we may simply omit qi from the set of g's. 
Thus by omitting some of the points provided by Definition 5 we can 
obtain a set which satisfies the conclusions of the lemma. 

LEMMA S. (i) If £ E ( C , D){ and qE(C, D)J' and p~q in Bn' and 

\i—j\ ^ 3 , then the points s*, • • • , Sh-i of Lemma 4 may be taken as 
the set of all points of 2ti between p and q. 

(ii) If £*(C, jD)~£ i + 1(C, D) in Bn' then CSB if i is even, D^B 
if i is odd. 

(iii) Ifl(A)~r(A) in B«' then A SB. 

PROOF. First suppose w = l . 
Suppose the hypotheses of (i) are satisfied. Since » = 1, we may by 

Definitions 1 and 2 replace these hyptheses by the following which are 
implied by them: p^p^C, D), q^p^C, D), p~q in Bi', and \i-j\ 
^ 4 ; by "replace" we mean that one whole set of hypotheses replaces 
the other set, but i and j need not have the same meaning in both. 
Indeed, the fact that (C, £>)>' contains both pJ'(C, D) and pi+1(C, D) 
is the reason why in the second set we must allow a greater difference 
between i and 7. Since » = 1, 2ln = 2ïi, soin Lemma 4, Sh&Sa for all h. 
As in previous lemmas, we may ignore the trivial case p =q. 

First consider the case £=£°(C, D). Then by the assumptions, 
q = £ ; ( C D) with 1 ^J = 4. The Sh of Lemma 4 are all in 3Ii for h 9e 1, k. 
Moreover, s h and Sh+i must be in the same subset of 21; in particular 
Sk-i is in the same subset as Sk, so Sk~i is either p3+1(C, D) or pJ'~l{C, D). 
We shall assume the latter but the same type of proof would apply 
in the former case; likewise we shall assume j odd but a similar argu­
ment would hold if j were even. In Lemma 4, pJ~~x(C, D)~pJ(Ct D) 
in B\ implies by (5) that CSB since if j is odd then j —1 is even. If 
j —1 = 0 then p*=Sk-,i and (i) holds, the set referred to being vacuous; 
otherwise s ̂ 2 exists. Both 5^2 = 0 and Sk-2 — Sk-*i are prohibited by 
minimality, so by Lemma 4 and (S), sjc^2=sp3~2(Ct D) a n d D ^ - B . Thus 
both DSB and C^B. Then by (5), pv(C, D)^p^1(C1 D) in B%' for 
all v by (5), so that if we take 52, • • • , Sk-.i as the set of points of 2li 
between p and q, they will have all the properties required of them 
by Lemma 4; obviously they are minimal, since only successive 
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pv(C, D) can be equivalent by (5). Thus we have disposed of the 
case p=p°(C, D). 

Now consider the case p=p1(Cy D). If q=p°(C, D), the previous 
paragraph applies in view of the symmetry of our definitions as far 
as p and q are concerned. Otherwise, q —p3'(Cj D) with 2 ̂  j ^ 5. Either 
Sfr_i =^/"~1(C', D) or Sft-,i —pJ'+1(Ct D). In the former case the argument 
of the previous paragraph is still applicable; in the latter case the 
argument fails if j+1 = 6. But then D^B by Lemma 4 and (5) since 
p*(C, D)~p*(C, D); also, either s2=£°(C, D) or s2=p2(C, D). If 
S2:=p0(C1D) then by the same reasoning, C g 5 ; s i n c e we already have 
found D^B, then as in the previous paragraph, pv(C, D)~pv+1(C, D) 
for all v and (i) holds. If on the other hand S2 — p2(C, D) then either 
52 = g a n d the desired result (i) holds immediately, or Sz=pz(C, D) by 
minimality and so by Lemma 4 and (5), C^B and then just as in the 
last sentence (i) holds. Thus the case p=p1(C, D) is disposed of. 

If p^p{{C% D) for i = 5 or i = 6, the situation is symmetric to the 
cases i = 1 and i = 0 of the last two paragraphs. If i = 2, 3, 4, the same 
argument as with i = 0 may be used if p and q are interchanged, for 
the essential part of that argument was that p was between q and 
one end of SI and that q was far enough from the other end. 

Thus for n = 1, (i) holds in all cases. 
Now suppose the hypothesis of (ii) holds, with still » = 1. By (i) 

which has been proved for this value of n, we then have p{(C, D) 
~pi+1(C, D) by (5); and (5) gives precisely the desired conclusion, 
proving (ii) for w = l. 

Now suppose the hypothesis of (iii) holds, with still n = l. By 
Lemma 4, si=p> S2=p1(Ci D) for some C and Z>, and, by (5), C^B. 
By minimality sz=p2(C, D) so D^B. Thus A SCKJDSB and (iii) 
holds. 

For n>l we proceed by induction; suppose the lemma has been 
proved for all smaller values of ny and that the hypotheses of (i) hold. 
For the moment let us suppose also that neither p nor q is in Hi, and 
consider the Si of Lemma 4. Both 52 and Sk-i are in §li. If we consider 
these two points in the role of p and q} then the same argument as 
for n = l may be applied, except that when there we appealed to (5), 
now we must look to Definition 5 as the way to have Si~Si+i in Bn'. 

Consider the case S2s=p°(C, D). Then Sk-i=pï(C, D), where just as 
with n = 1, j is not necessarily the j of the statement of the lemma, but 
1 ^ i ^ 4 . Then Sh-a must be in the same subset of 2Ï as Sk-i, so Sk-2 is 
either pi+1(C, D) or p^iC, D)\ we shall assume that it is the latter 
and that j is odd. By Lemma 4 and Definition 5, p^iC, D)~pj(C, D) 
in Bn implies l(C)~r(C) in Bn~i'. If j —1=0 then S2 = s&-2 and (i) 
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holds as applied to 52 and s&~iî otherwise Sk-z exists and by minimality 
it is not p so s^z—p^iC, D), and by the same argument as in the 
previous sentence, 1(D) ~r(D) in Bn-\. Hence if we take 53, • • • , s*-2 
as the set of points of Sïi between S2 and Sk-i, they will have all the 
properties required for Lemma 4, for s ^ 1 and Sh+i"1 will be either 
1(C) and r(C) or 1(D) and r(D) or vice versa, and these have been 
shown equivalent. 

Now consider the case S2ssp1(C, D). If Sk~i=P°(C, D), the previous 
paragraph applies by symmetry. Otherwise Sk-i^p^C, D) with 
2 g j ^ 5 . Either sk^%^p^l(Cy D) or s*-2=£'+1(C, &)> In the former 
case the argument of the previous paragraph is still applicable ; in the 
latter case the argument fails if j + 1 = 6 . But then by Lemma 4 and 
Definition S we have l(D)~r(D) in B^'. Also, either s* = p*(C, D) 
or sz ~p2(C, D). If ss =£°(C, D) then by the same reasoning 1(C)~r(C) 
in 5 n_i ' ; since we already found l(D)~r(D)y then as in the previous 
paragraph, (i) holds as applied to 52 and $*-,i. If on the other hand 
si=sp*(C, D) then either s* — Sk-,i and the desired result holds immedi­
ately, or Sé~pz(C, D) by minimality and so from sz~st we have 
l(C)r^r(C) in 5 n - i ' , and just as in the last sentence (i) holds as ap­
plied to S2 and s*-i. 

If S2 — pi(C> «D) f ° r ^>1> the proof may be referred to the cases 
i = 0 and i = l above, just as was done for w = l. Thus (i) holds in all 
cases, as applied to 52 and $*-i; now we must show that (i) holds as 
applied to p and q. 

Since we assumed that neither p nor q was in 2li, s2 must be in 
the same subset of % as p by the conditions of Lemma 4, and Sk-i in 
the same subset as q. Then by Definition 8, 53, • • • , s*-2 (which by the 
above may be taken between 52 and s*-,i) will be between p and q. 
Suppose however that 52 is not between p and q though s3 is. In view 
of the conditions imposed on the s% in Lemma 4, 52 and 53 must then 
both be in the same subset of 21 as p\ p-1~S2~1~sz~l so p~x~s£~l 

and 52 may be omitted. Likewise if Sk-i is not between p and q it 
may be omitted. Thus (i) holds if neither p nor q is in Sir, the argu­
ment can readily be modified to take care of the possibility that one 
or both is in 2ti-

Now suppose the hypothesis of (ii) holds. By (i), p{(C, D) 
~pi+l(C, D) in Bn' implies that their antecedents are equivalent in 
JSn-i'; that is, l(C)~r(C) or l(D)~r(D) in J3n_i' as i is even or odd. 
But by (iii), which is assumed already proved for Bn~i\ this implies 
C^B or D^B as i is even or odd, so (ii) holds. 

Now suppose the hypothesis of (iii) holds. In Lemma 4, si —p=l(A)\ 
S2=s:pl(C, D) for some Cand D since ^G?ï i and s2 must be in the same 
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subset as sv But by (i), l(A)~pl{C, D) in Bn' implies C ^ 5 . Also 
53=£2(C, D) by minimality so similarly D^B. Then A SCUD SB 
so (iii) holds. 

LEMMA 6. Suppose p~q in Bn', p&(C, D){C% and qG(E, Fyc%, 
where C, D and E, F are distinct pairs. 

(i) If i> 1 then p~r(A) in Bn'. 
(ii) Ifi<4:thenp~l(A)inBn'. 
(iii) Ifj>l then q~r(A) in Bn'. 
(iv) I / i < 4 then q~l(A) in Bn'. 

PROOF. Suppose the hypothesis of (i) holds: i>l. By Lemma 4 
there exist points Sh with the properties specified there ; in particular, 
s/i£3Ii for 7 ^ 1 , k. We shall suppose that p is not in Hi; the necessary 
modifications if £E2ti will be obvious. By Definition 2, either 
Sï—ptiC, D) or S2—pi+1(C, D); we shall first suppose the latter. If 
S2 = r(A), tha t is, i ~ 5 , then the conclusion of (i) holds immediately; 
otherwise by minimality sz~pi+2(C, D). If sz~r(A) then (i) holds; 
otherwise s4=£*+3(C, D). But pi+l(C, D)~pi+\C, D)~pi+z(C, D) in 
Bn' imply C^J5 and P ^ 5 by Lemma 5 (ii), so £'(C, Z>)~£"+1(C D) 
for all J>, and S2~r(A) in £ n ' . Since p~$2 we have p~r(A) as desired. 

If 52=^>*(C', JD) the same type of argument applies; the hypothesis 
i > 1 insures that we shall get both C S B and DSB. 

Thus (i) holds. The proofs of (ii), (iii), and (iv) are similar. 

5. Proof of isomorphism. Having developed some tools in the pre­
vious section, we now proceed to prove that the partially ordered 
system of equivalence relations of Definition 7 is a lattice (a sublattice 
of the lattice of all equivalence relations on ©) and is isomorphic to 
the given lattice 8. Using the natural ordering among equivalence 
relations, we write B' SGf if and only if p~q in B'impliesp~q in G'. 

LEMMA 7. If BSG then B'SG'. 

PROOF. From Definition 4 it is obvious that B S G implies B\ SG\. 
By Definition 5 and induction it follows that then Bn'

rSGn'', so by 
Definition 7, B'SG'. 

Thus Lemma 7 holds; this proves that there is an order-homomor-
phism between the lattices. To prove it a lattice-homomorphism we 
need the next two lemmas. 

Any two equivalence relations, G' and J37, have6 a greatest lower 
bound, GT\H\ as equivalence relations—namely, p~q in G'CMI' if 
and only if p~q in both G' and IV—though it is not apparent a priori 

8 See for instance Birkhoff [1 ], or the other references cited in footnote 2. 
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tha t this new equivalence relation is one of those which we have con­
structed to correspond to the elements of the given lattice. Likewise 
G' and Hr have a least upper bound G ' U i l ' — p ~ q in G'\JH' if and 
only if there exist ri, 7% • • • , r* with ri=/>, fk — q, and for each i, 
Ti~ri+i in G' or in H'—which need not a priori correspond to an ele­
ment of the given lattice, but we proceed to show that it is in fact 
identical with the relation constructed to correspond to G\JH. 

LEMMA 8. (GUH)' = G'KJH'. 

PROOF. GèG\JH so, by Lemma 7, G'S(GUH)'; similarly H' 
£(G\JH)'; hence G'VH'£(GUH)' since G'KJH' is the least upper 
bound of G' and H' as equivalence relations. As for the converse, 
we propose to prove by induction on n that 

(G \J H)n
f s» Gn+l' U fln+l' • 

Suppose n = 1. If p~q in ( G U i ? ) / then by Lemma 4 there exist the 
usual points Sj with Sj~Sj+i by (5). Suppose it is the alternative (Sa) 
which holds; then for an even i, s ? =£ ' (C , D), Sj+i=pi+1(C, D) or 
vice versa, and C^GKJH. Now consider the set (Sr, it has subsets 
(G, HY since C^GKJH, and p"(G, H)~pv+l{G, H) in Gi' if v is even 
and in H\ if v is odd, by Definition 4. By Definition 5 the images of 
these points in 2Ï2 are equivalent in G* or U% as the case may be; 
if the prefix I denotes their images, then 

s s - p\C, D) = Ip(G, E)~Ip1(G, E) ~ • - • ~ / ^ (G , ff) ~ /£6(G, fl) 

= p*»(C, D) = 5^1 

in Gz^JH*. Thus for each j , Sj~Sj+i in G*\JHi so £^<z in Gz^JH?,' 
as desired. 

If # > 1 , we proceed by induction. If p~q in (G\JH)n' then by 
Lemma 4 there exist the usual Sj with sf~^Sj+r - 1 in (G^JH)^ by 
Definition 5. By induction, sf~1^,Sj+i"'1 in Gn'KJHn'. By the nature 
of the least upper bound, there exist ri, • • • , r* in (£ or in 5) with 
ri = 5,"*1, rjfe = Sj+r*S f i '^ ' t+i *n G»' or in Hn'. By Definition 5, their 
images in 31 are equivalent: Iri^Iri+i in Gn+i' or in Hn+i'. Hence 

sj = In ~ Zr* = sm in Gn+i' U Bn+i', 

for each j . Hence p~q in Gn+i ,Ui3r
w+i', as desired. 

Thus for all n, (G\JH)n' éGn+1'\JHn+x'. But Gn+i '^G' and 
H n + i ' S H ' s o 

(G U fl).' ^ Gn+1' \ J Bn+Ï SG'V E'. 

If £^<z 'm (G^JH)' then £ ~ g in (&UH)n' for some » by Definition 7, 
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and then by the above inclusion relations, p~q in G'\JW'. This proves 
Lemma 8. 

LEMMA 9. (GC\H)f= G ' f W . 

PROOF. By Lemma 7, (GCMI)'SG' and (Gr\H)'<H', so (GPii l) ' 
rgGTYZJ'. For the converse, suppose p~q in GfC\H'. Then p~q in 
G' and in H'. By Definition 7, £ ^ g in Gn' and in i l m ' for some n 
and m ; suppose for instance n ^ m ; then ^ ^ g in G„' and in iJ„' . I t will 
therefore prove the lemma if we can show that p~q in Gn ' and in 
Hn

f imply p~q in (Gr\H)n'f which we proceed to do by induction. 
Suppose n = l. 
Case 1. p^p\C% D), q = p]'(C, D)y \i-j\ g 3. Now p~q in Gi' and 

in H\. By Lemma 5 (i), the SK of Lemma 4 for both G\ and H\' 
may be taken as the set of points of 2ti between p and g, and s/^s^+i 
by (5a) or (5b), depending on whether the index is even or odd. Hence 
CSG and C^Jf, or DSG and DSH—depending on whether it is 
(5a) or (5b) that applies—so CSGC\H or DSGC\H. Hence by (5), 
Sh~Sh+i in (Gr\H)i. This holds for each h, so p~q in (G(~\H)\ as 
desired. 

Case 2. p=p{(C, D), q=p*(C, D), \i-j\ >3. We may assume i<j. 
By Lemma 4 there exist the usual s h with s / ^ ^ + i in Gn ' by (5). Then 
i = 0 or s 2 =£*- 1 (C D) or 52=^*+1(C, D). 

Case 2a. S2=£*+1(C> £>). Suppose for instance i is even; then by (5), 
CSG. Also Sz = Si and 53 = 2̂ are excluded by minimality, and S2 = q 
and sz=q are excluded by \i—j\ > 3 , so 53=^*+2(C, Z>) and DSG by 
(5). Hence using (5) in the opposite direction, p*(C, D)~pv+l(C, D) 
for all v; and p, 1(A), r(A), and q are all equivalent in Gn '. Before 
proceeding, we bring the other subcases of Case 2 to a corresponding 
situation. 

Case 2b. s2 = pi~1(Ct D). If i = l, we have immediately £Ö(C, D) 
~p1(C, £>) and CSG. Otherwise i = 2, since i > 2 is excluded by 
\i—j\ > 3 . But by minimality, 

*3 - P{-2(C, D) = 1(A) 

and C ^ G and DSG from S2~ss a n d s\~S2. 
Case 2c. i = 0. Here/>=/(i4). 
Thus in all subcases of Case 2, if pv(C, D) and pv+1(C, D) are both 

between p and /(-4) then C^G or -D^G as v is even or odd. Similarly 
CSH or DSH, so CSGC\H or DSGC\H, and />"(C, D)~pv+l(C, D) 
in (Gr\H)i', so />~/(i4) in (Gnf l ) i ; , as well as in Gi' and JPJi'. Simi­
larly g~r(i4) in Gi', in Hi ' , and in ( G H i J ) / . Then 
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1(A) ~ p ~ q~ r(A) in G{ and in H{ ; 

by Lemma 5 (iii), A g G and A ^H. Hence A ^GCMI, so by Lemma 1, 
l(A)~r(A) in (Gr\H)x'. Thus 

p~l(A)~r(A)~q in ( G H f l ) / 

as desired. 
Case 3. £ G ( C , £>)*, j 6 ( £ , F)* with C, 23 and E, F distinct pairs. 

This breaks up into four overlapping subcases. 
Case 3a. i > l , j > l . By Lemma 6, £ ~ r ( - 4 ) ~ g in G / and in 2Ji'. 

By Cases 1 and 2, p~r(A)~q in ( G f W ) / so £ ~ £ in ( G r W ) i ' as 
desired. 

Case 3b. i > l , i < 4 . By Lemma 6, p~r(A) and g~/(i4) in Gi' and 
in ffi7; hence r ( i l )~ /C4) in G / and in 22i'. By Lemma 5 (iii), 4̂ £G 
and ASH so A SGC\H and by Lemma 1, 1(A) ~r (A) in (GrW)i ' . 
By Cases 1 and 2, £^r ( -4 ) and g^ (^4 ) in (GfYff)i', so by transitivity 
£^<Z in (Gf\H)\ as desired. 

Cases 3c and 3d. i < 4 , J > 1 or j < 4 . Similar to Cases 3a and 3b. 
This concludes the proof for n = 1. If n > 1, we proceed by induction. 
Case 1. £ G ( C , 2?)*, qG(C, 23)', | * - j | £ 3 . By Lemma 5 (i), the s* 

of Lemma 4 for both Gn ' and 22",/ may be taken as the points of 2Ii 
between p and q. But Sh~l~Sh+f~l in Gn-i ' and in 22w_.i' and (by induc­
tion) in (Cni ï )n~i / , for all h. By Definition 5, £ ~ g in (GfYHV. 

Case 2. £ G ( C , D)\ gG(C, 23)>', | * - j | > 3 . We may suppose i<j. 
Let us also suppose that neither p nor q is in 2Ii; the modifications 
otherwise necessary will be apparent. By Lemma 4 the usual Sh 
exist, with S / T ^ S A + I " - 1 in Gn-i ' , and S2E(C, D)i but s3(£(C, 23)* by 
minimality. A l s o s * G 2 t i f o r h ^ l t k . T h e n s 3 e ( C , D ) i + 1 o r s 3 G ( C , P ) i - 1 

or i = 0. 
Case 2a. ssG(Cy D)i+\ Then s 2 =MC> D) and s 3 =£' + 1 (C, 2>) is 

impossible, for this would put si, S2, and s3 in the same (C, £>)* con­
trary to minimality. Hence, s2=pi+1(C, D) and ss=pi+2(C, D). If, 
say, i is even, then s2""1/^s3~

1 implies 1(D)~r(D) in Gn-i'. Likewise 
s4 = £ i + 3(C, D) and / ( C ) ~ K O in G„V. Also p-^s*-1 and by transi­
tivity p~l~l(C) in Gw-V; if i were odd this last would be p~l~l(D) 
in Gn-,i'. 

Case 2b. s 3 £(C , 23)*~1. In a similar manner, if pv(C, D) and 
pv+l(C, D) are between £ and 1(A) then l(C)~r(Q or l(D)~r(D) in 
Gn-i ' , as *> is even or odd, and p~l~l(C) or p~l~l(D) in Gn-i'. 

Case 2c. i == 0. In a similar manner, the same conclusion holds as 
in Case 2b. 

Thus in all subcases of Case 2, if pv(C, D) and pv+1(C, D) are be­
tween p and 1(A) then 1(C)~r(C) or 1(D)~r(D) in Gn-i ' as v is even 
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or odd, and p~l~l(C) or p"x^l(D) in Gn-.\ as i is even or odd. Simi­
larly these equivalences hold in Hn„i and so by induction in 
(GHIOn-i ' ; hence p~l(A) in G„', in Hn\ and in (GC\H)n'. Similarly 
q~r(A) in GV', in i J n ' , and in (G(^H)n

f. Then 

/(^4) ~ p ~ q~ r{A) in Gn and in ffn' ; 

by Lemma 5 (iii), A^G and -4 ^H so 4̂ g C H U and by Lemmas 1 
and 2, l(A)~r(A) in (GC\H)n'. Thus 

£ ~ /(i4) ~ r(4) ~ q in (GH ff)n' 

as desired. 
Case 3. pCz(C, D)\ g £ ( E , F)K The same argument as for n = 1 may 

be used. 
Thus Lemma 9 is proved. This shows that we have a lattice-homo-

morphism. To prove this an isomorphism we need the following 
lemma. 

LEMMA 10. If B'^G' thenB^G. 

PROOF. By Lemma 1, l(B)~r(B) in £ ' , so by hypothesis l(B)~r(B) 
in G'. By Definition 7, 1(B)~r(B) in Gn

f for some n. By Lemma 5 
(iii), BSG as desired. 

From Lemmas 7-10, the equivalence relations which were con­
structed form a lattice isomorphic to the given lattice. Hence we have 
the main result : 

THEOREM 1. Any lattice is isomorphic to a sublattice of the lattice of 
all equivalence relations on some set. 

COROLLARY 1. If a lattice identity holds in the lattice of all equiva­
lence relations on the set @, for every ©, then this identity holds in every 
lattice. 

6. Connection with groups. Birkhoff has shown fl] that any sub-
lattice of the lattice of all equivalence relations on a set is isomorphic 
to a sublattice of the lattice of all subgroups of some group.7 In view 
of Theorem 1, we immediately have the following theorem. 

THEOREM 2. Any lattice is isomorphic to a sublattice of the lattice of 
all subgroups of some group. 

COROLLARY 2. If a lattice identity holds in the lattice of all subgroups 
of the group ®, for every ®, then this identity holds in every lattice. 

7 The converse is better known ; Birkhoff [1 ] has a proof of it as well as references. 
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Since Birkhoff gives only an indication of the proof of his result, 
it is perhaps worth giving a proof here. We are given a lattice of 
equivalence relations on a set ©. If B is one of these relations, let B* 
be the group of all permutations P : p-~>f(p) of the points p of © such 
that 

(8) for each p, f(p)~p in B, and 
(9) P leaves unchanged all but a finite number of the points of ©. 
Evidently 5 * is a subgroup of the group of all permutations of @. 
Then JB*nC* = (jBnC)*, for any permutation which satisfies (9) 

and has f{p)~p in B and in C also has f(p)~p in BC\C and con­
versely. 

Also B * U C * = ( 5 U O*. For certainly B* £(B\J C)* and 
C*g(BUC)* ; on the other hand suppose PE(B\JC)*\ that is, P is 
a permutation which involves only a finite number of points and in 
which f(p)~p in BKJC. By definition of join of equivalence relations, 
there exist for each p affected a finite number of points w\, • • • , Wk 
with Wi =p, Wk =f(p), and w<~w*+i in 5 or in C. Consider, for a given 
p, the permutation which is the following product : 

(WiW2)(w2Wz)(WsWi) • • • (t»fc-iW*)(w*-2W*»l)(w*-»W*-a) • • • (WiW2). 

We observe tha t this product equals (wiWu) ; that is, it simply trans­
poses p and ƒ(ƒ>). On the other hand each factor (w<w»-+i) is a member 
of JB* or C* according as Wi~Wi+i in J5 or in C. Thus any transposition 
(wiWk) of points equivalent under B\JC is a member of 5*UC*. But 
by (9), any member of (BUC)* affects only a finite number of points 
of ©, and hence is the product of a finite number of transpositions 
(pq)\ it is evident that these transpositions can be so chosen that 
p~q in B\JC\ by the above argument each of these transpositions 
(and so also their product) is in J3*UC*, so ( 5 U C ) * g 3 * U C * . Then 
by the first part of this paragraph, (J3VJC)* « J3*UC*. Thus the given 
lattice of equivalence relations has an isomorphic lattice of subgroups 
as asserted. 
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