
AREOLAR MONOGENIC FUNCTIONS 

R. N. HASKELL 

1. Introduction. There have been several modifications of the defi­
nition of the derivative of a complex function of a complex variable 
which lead to theories of non-analytic functions. These generaliza­
tions were initiated by Riemann (1851) and Picard (1892) and fol­
lowed with others by Pompeiu, Kasner and Cioranescu. The general 
derivatives of Riemann and Cioranescu depend on direction and 
have an infinite set of values at a given point, hence Kasner gave to 
the class of non-analytic functions considered the name polygenic 
functions to distinguish them from classical analytic, monogenic func­
tions.1 

The conditions for classical monogenity have been much reduced by 
Looman-Menchoff [7, pp. 9-16; 9, pp. 198-201 ].2 We shall similarly 
reduce the restrictions for the existence of the Cioranescu single-val­
ued areolar derivative and show that under those reduced conditions 
the real and imaginary parts of the areolar monogenic function are 
biharmonic. Finally the class of areolar monogenic functions so de­
termined will be simply characterized in terms of the Pompeiu de­
rivative. 

2. The Cioranescu and Pompeiu derivatives. Let f(z) ~f(x, y) 
*=u(x, y)+iv(x1 y) be defined in a domain D of the complex variable 
z~x+iy. Construct a rectangle in D at a point z of D whose vertices 
in positive order are z, Zi, z', s2. If z is taken as the pole of a polar co­
ordinate system (p, <f>) then Zx—z — pxe**, z% —z=p2e

i(*+*/2) and z'—z 
â=(pi2+p2

2)x/2ef(*+a) where a = tan~x P2/P1. We now form the quotient 

(21) J W - J W - W - W W 
(zi - z)(z2 - z) 

and consider the limit of A2f(z) as pi and p2 approach zero with </> held 
Received by the editors October 26, 1945, and, in revised form, November 24, 

1945. 
1 See E. R. Hedrick, Non-analytic functions of a complex variable, Bull. Amer. Math. 

Soc. vol. 39 (1933) pp. 75-96 for an extensive bibliography. The author is indebted to 
the referee for the following observation. "Calugareano studied the second derivative 
of a polygenic function for only one rectilinear path of approach; Nicolesco studied it 
for any two different rectilinear paths of approach and Cioranescu considered the limit 
for two mutually perpendicular, rectilinear paths. Kasner and DeCicco have studied 
the geometry of the second derivative for a general curvilinear path of approach." 

* Numbers in brackets refer to the references cited at the end of the paper. 

332 



AREOLAR MONOGENIC FUNCTIONS 333 

constant. If u(xt y) and v(xt y) have continuous second order partial 
derivatives at z, the limit exists and we have 

^ Z _ f A2f(z) - Z)2/(*) 

0 i r *(/" ~/yv ~2ifxv)/4: ~(/" "/vi/+w-)***^ 
- [(«.» - «yy + 2t;*y) + i(vxx - t>yv - 2w*tf)]/4 

- [(**• - %y - 2v9W) + i(vxx - »yy + 2uxy)]e~u+/4. 
The necessary and sufficient conditions that D2f(z) shall be inde­

pendent of <t> are that 

(2.3) Uxy « - (flx* - ty,)/2, *>** "• {Uxx - «yy)/2. 

If (2.3) are satisfied then D2f(z) ~vXy~-iuxvi$ the Cioranescu derivative. 
If now u(x, y) and v(xt y) are assumed to have fourth order partial 

derivatives at z then from (2.3) we have V*u(x, y)=V4i;(#, y) where 
V4 = V2(V2) and V2 is the Laplacian operator. 

We shall make the following definition. 
Definition. A complex function ƒ(z)~u(xf y)+iv(x, y) defined in a 

domain D will be said to be areolar monogenic at a point (xt y) of D 
if u(x, y) and v(x, y) have continuous second order partial derivatives 
at (x} y) which satisfy (2.3). We shall call f(z) an areolar monogenic 
function in D if these conditions are satisfied at every point of D. 

The Pompeiu areolar derivative is defined as 

(2.4) - ^ - L I f(z)dz 
J Dw *"° 2iw J/ 

where 5 is any simple rectifiable closed curve of diameter S which 
with its interior <r is in D and w is the area of <r. If u(xt y) and v(x, y) 
are continuous with their first and second order partial derivatives we 
have 

(2.5) O- - [(*. ~ Vy) + i(VX + Uy)]/2 
Dw 

and 

D2f 
(2.6) —— - [ - VXy + (UXX - Uyy)/2 + t{uxy + (VXX - Vyy)/2}]/2. 

Dw2 

As remarked by Cioranescu [2, p. 29] we see by (2.6) that the 
class of areolar monogenic functions is the class of solutions of the 
differential equation D2f/Dw2~0. 
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3. Green's lemma. Most discussions of monogeneity lead to the 
evaluation of fc(R)f(z)dz where the integral is a line integral around 
a closed curve in D which in our case we shall assume is a rectangle 
with sides parallel to the coordinate axes. This integral is then trans­
formed by Green's lemma into integrals over the area of the rec­
tangle. A reduction of conditions under which 

(3.1) I f(z)dz = — I I (uy + vx)dxdy + i I I (ux — vy)dxdy 
J C(R) J J R J J R 

then leads to reduced conditions for monogeneity. We shall give three 
conditions for (3.1) to hold for all rectangles C(R) in D. 

(3.2) Condition C. If u(x, y), v(x, y), ux, uyi vx and vy are continuous 
in D, then (3.1) holds for all rectangles in D. 

(3.3) Condition A. If F(R) =/c(«)Wdy, G(R) = —fc(R)Udx with simi­
lar conditions for v(x, y) and .Fand G are absolutely continuous func­
tions of point sets in D, then (3.1) holds for all rectangles C(R) in D. 

This is condition (A) of Evans [4, p. 32]. 
(3.4) Condition M. If ux, uy, vx and vy exist almost everywhere in 

D and are summable and, moreover, at each point of D except for at 
most a finite or denumerably infinite set, the functions u(x, y) and 
v(x, y) have finite Dini derivatives with respect to x and y, then (3.1) 
holds for all rectangles C(R) in D. 

This condition among others was given by Menchoff [5, p. 29]. 

4. The principal theorem. We are now in a position to prove the 
following theorem. 

THEOREM 1. If u(xf y) and v(xf y) satisfy conditions C, A or M in D 
and the equations 

(4.1) * , - ! > „ = U(xf y), uy + vx~ V(x, y) 

hold almost everywhere {everywhere under condition C) in D, where 
U(xt y) and V(xf y) are conjugate harmonic in D, then f(z)—u(x, y) 
+iv(x, y) is areolar monogenic in D> 

PROOF. Under the conditions C, A or M the differential equations 
(4.1) are equivalent to the integral equations 

(4.2) 
/

vdx + udy = i I U(x, y)dxdy, 
C(R) J J R 

/
vdy — udx = I I V(xf y)dxdy. 

C(R) J J R C(R) 

These are the integral equations considered by Evans [4]. Let 
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(4.3) 

„(*, y) = M(if) - - 1 f f l o g - i - £/(P)<f<rp, 
2wJ J D MP 

v(x, y) - „(jf) _ _ 1 f f l o g - i - F(P)rf<rp. 
2TJ J D MP 

Since £/(#, y) and F(#, y) are harmonic in Z> they satisfy a Holder 
condition [6, p. 153] and the first and second partial derivatives of 
fi(M) and p(M) exist a t M and 

(4.4) VV(*, y) - #(* , y), v y * t y) » F(s , y). 

The general solution of (4.2) is 

djj, dv dy}/ dv dfx d\p 
(4.5) u(xt y) = 1 1 > v(x, y) « 1 > 

d# dy dy dx dy dx 
where \//(xf y) is (in D) an arbitrary harmonic function. Now by the 
theorem of Evans [4, p. 33], (4.5) is a solution of (4.1) almost every­
where in D when U(x, y) and V(x, y) are only bounded and measur­
able in the Lebesgue sense. In our case with U(x, y) and V(x, y) 
harmonic in D, (4.5) is a solution of (4.1) everywhere in D and any 
solution of (4.1) satisfying C, A, or M can be given the form (4.5). 
We have from (4.5) and (4.4) 

(4.6) Us-Vy=* VV(s, y) = U(x9 y), Hv + vx~ V2v(x, y) = V(x, y) 

at all points (x, y) of D and therefore /*(#, y) and P(X, y) satisfy 

(4.7) VV(*. y) = V2U(xf y) « 0, V*v(x, y) « V2F(*, y) = 0 

at all points (x, y) of Z>. Solutions /z(x, y) and v(x, y) of (4.7) are ana­
lytic in D and since /*(#, y), *>(#, y) and ^(#, y) are all solutions of 
VHv = 0 their first partial derivatives are also biharmonic and there­
fore analytic in D. Therefore u(x, y) and v(x, y) by (4.5) are bihar­
monic and analytic in D. Now from (4.1) we derive that 

2UXy + (PXX - Vyy) * Uy+VX = 0, 

2?*y ~ («**» ~ Uyy) » - 17, + F„ = 0 

and therefore ƒ(2) is areolar monogenic in D. 

COROLLARY. If u(x, y) and v(x, y) satisfy the conditions C, A or 
M in D and the Pompeiu derivative exists for all rectangles C(R) in D 
and Df/DR~ [U(x, y)+iV(x, y)]/2~F(z)/2 almost everywhere in D 
and F(z) is monogenic in the ordinary sense> then D2f(z)/DR2 = 0 at all 
points of D and f(z) is areolar monogenic. 
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The following theorem is an analog of the first theorem of Menchoff 
[7, p. 9] relative to ordinary monogeneity. 

THEOREM 2. The function f (z)~u(x, y)-\-iv(x, y) is areolar mono-
genie in a domain D if u(x, y) and v(x, y) satisfy condition C in D 
and if the second partial derivatives of u(x, y) and v(xt y) exist, are 
finite and satisfy the conditions (2.3) everywhere in D except for a point 
set E which consists of at most a finite or denumerable infinity of points. 

PROOF. Let U(x, y)~ux—vv, V(x, y)~uy+vx. Then by (2.3) we 
have on D—E 

17» - Vy « - 2Vxy + UXX ~ Uyy » 0, 

Uy + VX = 2UXy + VM ~ Vyy = 0. 

By the theorem of Menchoff [7, p. 9] U(x, y) and V(x, y) are con­
jugate harmonic functions in D and F(z)~U(x, y)+iV(x, y) is a 
monogenic function in the ordinary sense. Therefore, by Theorem 1, 
f{z) is areolar monogenic. 

COROLLARY. If u{x, y) and v(x, y) satisfy condition C in D and the 
second Pompeiu derivative exists, is finite and equal to zero at all points 
of D except for at most a finite or denumerably infinite set, then f(z) is 
areolar monogenic in D. 

5. An analog of Morera's theorem. We have the following analog 
of the theorem of Morera. 

THEOREM 3. A necessary and sufficient condition that f(z) be areolar 
monogenic in D is that it be continuous, and for all circles C(XQ, y^\ r) 
with center (x0, y0) and radius r in D 

(5.1) f f{z)dz - 7rrH[U(x0, y0) + *T(*o, yo)] 

where U(x, y) and V(x} y) are given conjugate harmonic f unctions in D. 

PROOF. Necessity. If ƒ(z) is areolar monogenic in D we let 

(5.2) ux - Vy » U(x, y)f Uy + vx= V(xt y) 

and, by (5.1) and (2.3), £/(#, y) and V(x, y) are conjugate harmonic in 
D. Therefore we have 

(5.3) 
/

f(z)dz » I udx — vdy + i I vdx + udy 
c J c J c 

" * ƒ ƒ ^x'y) + ,T(*' y^dxdy' 
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Now by the mean value property of harmonic functions we have from 
(5.2) that (5.1) is satisfied for all circles C(XQ, y^; r) in D. 

Sufficiency. From (5.1) by the mean value property of harmonic 
functions we have (5.3) and therefore 

(5.4) 

I vdx + udy «• I I U(xt y)dxdyt 

I vdy — udx =* I I V(x, y)dxdy. 

Now by an argument similar to that for Theorem 1, f(z) is areolar 
monogenic. 

COROLLARY. The class of ordinary monogenic functions is a subclass 
of areolar monogenic functions [l, pp. 264-265]. 

In this case U(x, y)+iV(x, y)szO in D and by (5.1), fcf(z)dz — Q 
for all circles C(x0f y0; r) in D. The solution of (5.4) with the right-
hand member zero is given by (4.6) with / i sysO, Therefore u(x, y) 
and v(xt y) are conjugate harmonic in D and f(z) is monogenic in the 
classical sense. 
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