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HARVARD UNIVERSITY 

ON A CERTAIN TYPE OF NONLINEAR 
INTEGRAL EQUATIONS 

MARK LOTKIN 

1. Introduction. The object of this paper is to prove that the non­
linear integral equation 

[ m /» 6 y» b 

ƒ(*) + E I I Ki(*> s u • • • • Si) 
i**lJ a J a 

'Fi(su • • • , sif <t>(si)f • • • , 4>(si))dsi • • • < & « 

has at least one eigenvalue, provided the functionals 

ƒ• & y» b 

• • • I Ki(x, su • • • , Si) 
a J a 

'Fi(Su ' ' ' , * , t>($i)> ' ' • • «(*<))<kl ' * ' dSi 
are fully continuous, and the Fi satisfy a certain linear integrodiffer-
ential equation. The solution of (1) is shown to be equivalent to that 
of a variational problem containing infinitely many parameters. The 
latter problem, however, can be solved easily by the method of Ray-
leigh-Ritz, which consists in approaching the solution of the varia­
tional problem by a sequence of variational problems containing only 
a finite number of parameters. The convergence of this procedure is 
assured by a convergence theorem of Friedrich Riesz. 

2. Preparatory remarks. Let I be the closed interval a£x£bf and 
L2 the class of all functions having Lebesgue integrable Squares on I 
with a norm not larger than iV2. Let, further, {»»(*)} (w = l ,2, 3, • • •) 
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be a set of functions in L2 and v(x) a function such that1 

(3) lim I vn(x)w(x)dx = I v(x)w(x)dx 

for any arbitrary w of integrable square on I or, what is equivalent, 
for any arbitrary w£L 2 ; that is, we assume the weak convergence 
of {vn)j in the following denoted by W-\\mn^wvn^

!ô. We next show 
that vÇzL2. Since the right-hand side of (3) is assumed to exist for 
every w £ £ 2 , it follows by a known result (see, for example, Kaczmarz-
Steinhaus, Theorie der Orthogonalreihen) that v is of integrable square 
over I. Hence, if %v — vf (3) becomes 

/
v2(x)dx = lim I vn(x)v(x)dxi 

and since by Schwarz's inequality 

I f vn(x)v(x)dx\ £ N2 J f z ) 2 ( ^ ^ l , 

we obtain, as claimed, 

(4) f v\x)dx £ N2. 

We now assume that the functional Gi(x, v) be fully continuous, that 
is, that 

(5) lim Gi(xn, vn) = Gi($, v), i = 1, 2, • • • , m, 

for any {xn} £ ƒ and flw£L2 for which limn-oo#n = #and WA\mn^wvn = v. 
The introduction of a closed orthonormal system of functions 

{wy(x)} £Z 2 associates with each vn an infinite sequence of numbers 

Cnv = I Vn(x)wv(x)dx, V = 1, 2 , • • • , 

such that 

for every n^l. The class L2 of functions z; then corresponds to a class 
£ 2 of vectors t>s3(ci, c2, • • • ) with cv=fv(x)wy(x)dx. The transition 

1 All integrations are to be extended over the interval I. 
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from L2 to § 2 implies the substitution in Gi(xn, vn) of vn(x) by its 
equivalent ,o(x)^^2^mlcnvwv(x)9 and (5) now changes to 

lim Gi(xn, Vr) « Gi(d5, ti) s P<(#, eu £2, . . . ) 

for any {xn} £ ƒ and {vn} £ $ 2 for which lim».*00ff» = # and limn^cnv 
= cVf p=*l, 2, • • • . From the full continuity of the G* thus follows 
the full continuity {VollstetigkeitY of the Pi. It is just as easily seen 
that the converse also holds true. 

3. Construction of a solution of the integral equation. In the d we 
now admit as arguments vn only aggregates of the form vn(x) 
=]C?-i CnwW,(x) with X?-i <4 = N2 for every fixed n. The functional 

(6) /(*>«) = 2 I f(x)vn(x)dx + ]£ ^ j Gi(x, vn)vn(x)dx 

—here the e» denote finite numbers to be determined later—is now a 
continuous function of the cnv and so has at least one minimum. Let 
cnv = anv (P = 1, 2, • • • , n) be the minimal coordinates: 

(7) min J(vn) = dn = /(tf>w), <t>n(x) = ] £ <*nwW9(x), ] £ anv = 2V 

As a consequence of (7) we have8 

2 _ 2 

p- i 

(8) 1~ \JM + T ( N * ~ £ > C»")1 = °- " = 1. 2, • • • , «. 

However, 

^w.2rf/w.+z«ff... 
d£n* Lw i J J 

I jK"»- ( Vw - + WvF{ J dfftfai • • • dS{ . 

We must now make the following assumption : The Fi satisfy the linear 
integrodifferential equations 

(9) I • • • I KA eiVn — (1 — ei)wj?i dxdsi • • • dsi = 0 

2 See D. Hubert, Grundzilge einer allgemeinen Theorie der linear en Integralglei-
chungen, 1912, p. 177. A fully continuous function P(x, Ci, c*, • • • ), where x £ J and 
lH"-icr£N2, is bounded. 

8 In (8), 1/Xn denotes Lagrange's multiplier for the extremum problem under con­
sideration. As will be shown subsequently, Xn̂ O for every n. 
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for all arguments » » = E ( F ) ^ « ' V , identically in the cnv. 
In this case we obtain 

dJ(vn) ~ 2 [ / (f + ̂  ƒ ' ' ' I KiFidSl ' ' ' ^W*]' ad 

and (8) leads to 

(10) anv = Xn I G(x, Qrùwpdx, v = 1, 2, • • • , n, 

with 

G(X, <t>n) = f(x) + Ç ƒ • • . ƒ»:<(*, *, • • • , Si) 

'Fi(Su • • • , 5<, 0»(5i), • • • , <t)n(Si))dSi • • • J*,-. 

On account of anv^J<f>nWvdx the relations (10) may be written as 

(11) J (<*>« - \ n G ( x , <t>n))wvd'% = 0 for v = 1, 2, • • • , n. 

Equations (10) show that the |X»| have a common positive lower 
bound: multiplication of (10) by anv and summation for v = 1, • • • , n 
result in 

(12) N2 = Xw fG(X, <l>n)<t>ndx. 

But since G(x, <j>n) is a fully continuous function of the anv for # £ I 
and 0 n £ i ï 2 it is bounded: there exists a ô>0 such that 

| G(x, <t>n) | S N/(b - ay2Ô for every n. 
Therefore 

ƒ G(*, tf>w)<M* g J ƒ G2(#, 0n)rf* 1 | ƒ < ^ * | £ #*/«, 

whence |Xn| è ^ > 0 for every n. 
Now the J<j>%dx all have the same value N2. This property of the 

sequence {<£n} guarantees the existence of a $(x)—defined almost 
everywhere in I and possessing a Lebesgue integrable square—which 
is the PF-lim of a suitably chosen subsequence {<£a} of {<£n},4 

4 Friedrich Riesz, Untersuchungen iiber Système integrierbarer Funktionen, Math. 
Ann. vol. 69 (1910) p. 467. The sequence {»} is determined by Hubert's diagonal 
method (see, for example, Hellinger-Toeplitz, Encyklopâdie der mathematischen 
Wissenschaften vol. II C 13, p. 1405). 
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(13) TF4imte(*) - $(*); 
ü~»oo 

because the system {wv} is closed <? is determined uniquely almost 
everywhere in I. On account of (4), f$2(x)dx£N2. 

We are now going to show that 

(14) lim fG(x, 4>n)4>ndx » l G(x, $)$dx. 

Since 

ƒ G(«, #)#** - ƒ G(x, 4>n)4>ndx £ ƒ G(s, *)(* - fo)<*; 

+ ƒ (G(*f <?) - G(*f ta))<M* 

and the first expression on the right hand side—by (13)—may be 
made as small as desired by taking ft sufficiently large, only the second 
term remains to be considered. Now 

ƒ (G(«, <?) - G(x, <i>n))4>ndx £ N f ƒ (G(*, A - G(x, <t>n))2dx\ , 

and so (14) will be proved if we can show that lim*.,8o/(G(#, $) 
— G(x, <t>n))2dx~Q. This, however, follows immediately from the con­
vergence theorem of Lebesgue.5 The sequence Lu s (G(x,$) —G(xt </>*))2 

obviously satisfies the conditions of that theorem : (a) La is Lebesgue 
integrable ;(b) Since |G(*,*;)| £N/(b-a)V*ô, | i * | £4tN*/(b-a)ô2îor 
every ft; (c) Because of the full continuity of G(xt v), lim«^oo(G( ,̂ $) 
— G(x, <f>*)) =0. Therefore Z = 0, which proves (14). 

We must now distinguish between these two cases: 

I. There exists a 5 ; >0 such that \fG(xf $)$dx\ ^N2/ô'; 
IL fG(x,$)$ix-Q. 

CASE I. By (12), X«-^V/G(«, 0*)<M*, so that by (14) 

# 2 

( 1 5 ) M m X g - X -
n-*oo J G ( # , <j>)<l>dx 

exists; because of I, \%\ ^ 0 ' . 

6 If a sequence of Lebesgue integrable functions Ln(x) possessing a common bound 
has a limit function T(x), then Z, too, is Lebesgue integrable and \\vcin+«>jLn(,x)dx 
=/Z(x)dx. 
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If we now apply equations (11) to indices fl only and then take the 
Hm*.** we obtain 

ƒ ($(x) — %G(x, $))wp(x)dx » 0 for v » 1, 2, 

Since the system of the {wv} is closed we may deduce $—%G(x, $) = 0, 
that is, 

*(*) - * [ƒ(*) + 2 ƒ ƒ *<(*. *.•••. *) 
•J?i(si, • • • , si9 $(sOt • • • , $(s<))dsi • • • <fc< 

almost everywhere in J. We have thus obtained a solution $(x) of (1) 
belonging to the finite eigenvalue X. 

The previously derived relationship f$2(x)dx^N2 may now be im­
proved: replacing G(x, $) in (15) by its equal (1/X)<? leads to 
fP{x)dx-N*. 

CASE II. We write equations (10) for indices n only: 

1 
G(x, <l>fk)wpdx = — fla„, v = 1, 2, • • • , nt ƒ 

and increasing ft beyond any bound we obtain, since lim* 
and | a*, | ^iV, 

ƒ G(#, $)wvdx = 0, v « 1, 2, 

In this case $(#) may be considered a solution of (1) belonging to 
X = 00. 

4. The variational problem. We see, then, that $ is always a solu­
tion of (1). This function possesses another important property: If 
£ 2 denotes the class of all t>(x)^^2iv)cvwv(x) with^^c^ — N2, and 

8 00 ~ 2 à»w9(x) with #„ = I <?>(#) w„(#)dff, 

then 5 minimizes /(*>). 
To prove this we notice first that /(t>w) results from /(bw+i) if 

we put £n-t-i = 0. Let dn be the minimum of /(bn) in $2 . Then obvi­
ously dnëzdn+i. Let, further, d be the minimum of /(&) for toG:^2; 
then dn^d for every w. Therefore, if JslimftWËA839/(ö), we get J ^ d 
or d—d+rj with 77^0. We shall show that rj = 0. 
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Since d is the lower bound of J(b) in §2 there exists a p(x) 
^2(u)pvwp(x) in |>2 so that J(p) = J-0rç with O<0£1. If, now, €>0 
be chosen as small as desired, there is, because of the full continuity 
of /(b), a 3>0 and an index r such that |/(b) — J(p)\ <e for every 
b £ $ 2 , so long as \cv—pv\ <S for v=*lf 2, • • • , r. We take € = 0rç and 
choose r'^r large enough to have ^mlpl~Nn>N2-N2/(N+8y. 
Then the vector $(x) :=^rUifvwv{x) with pP = {N/N')pv belongs to $2 , 
and since N'>N2/(N+8), 

I & - #*| H *>l -(N/N' - 1) £ ff(W - 1)< * 
for p = l, 2, • • • , r'. We may, therefore, conclude that | J(p)—J(p) \ 
<e<n or JQf) <J($)+0r) = d. But dr> S /(JJ), and so dr> < J. 

By now choosing #, w^r ' , such that dn^dT' we get dn^d, a rela­
tion which contradicts the fact that the sequence d* converges to d 
from above. Thus we see that rç = 0 or J= / (8 ) . 

5. Solution of the integrodifferential equation. It is easy to verify 
that equations (9) are fulfilled if we put e» = l / ( i + l ) , Ki continuous 
and 

Ki(x, $ ! , • • • , $ * , • • • , Si) = Ki(sk, Su • • • , x, • • • , Si), 
k = 1, 2, • • • , i, 

Fi(su • • • , sit ult • • • , wt) = öwi • • • Ui 

for i = l, 2, • • • , m. 
It remains to be shown that functionals of the type 

Q(x, v) = I • • • I K(x, su • • • , *iM$i) • • • *0<)<ki ds* 

are fully continuous for x £ I and v £L 2 . Let us, therefore, assume that 
{xn} £ / , {*>»} G£2, limn^oo^n^^, and T^-limn^n8^. Then 

I G(*. *) - Ö(*« OI £ 16(*. «) - ö(*. OI +1 G(*. O - Q(*» OI 

= I • • • I K{x, si, • • • , 5i) [0($i) • • • «($<) 

- vn(si) • • • vn(si) ]dsi • • • ds< 

+ ƒ ' • • ƒ [*(*» *!»"•» *) 

— K{xny si, • • • » s*)K(*i) • • • vn(si)ds! - - • dsi 
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Because of the continuity of K the second term on the right-hand side 
may be made arbitrarily small by choosing n sufficiently large. In 
order to show that the same applies also to the first term we continue 
as follows: 

I * ' • I K[v(si) • • • $($i) - t>»($i) • • • vn(si)]dsi • • • dsi 

= I • • • I K X) H*Ù • • ' $(**~l) [l(Sk) - Vn(Sk)] 
\ J J &-1 

'Vn(Sk+l) • • • Vn(Si)dSi • • • ds> 

£ Z I ƒ • • • ƒ(ƒ*[*(**) - *»(**)]**) 

•»(5i) • • • 0(**-lH(*JH-l) * # ' 1n(Si)dSi • • • <k< 

^ E { ƒ • • • ƒ(ƒ*[*(**) - *»(**)]**) 
<| 1/2 

•d$i • • • dsk-idsk+i • • • dsi> «iV*"1. 

Since TF-limnH>00z;n = t;, limw^oo(/i£ [#($&) ~ »n(^*)]^*) = 0 , and since 
\fK{&, *i> • * • , Si)[v(sk)-~vn{sk)]dsk\ £2N(b— a)-max|JK*|, we see 
that the sequence of Lebesgue integrable functions (JK($, Si, • • •, s») 
• [W(J*)—»»(5*)]d5jb)2 has a common bound and the limit function 
zero. By Lebesgue's convergence theorem we may conclude that 

lim I • • • I I I K[v(sk)—vn(sk)]dsk] ds\ • • • dsk-idsh+i • • • <fo»=0 

for * = 1, 2, • • • , i, so that the proof of the full continuity of Q(x, v) 
is now complete. 

6. A special case. The deductions of §4 are therefore applicable 
to the integral equation 

*(*) = X f(x) + 2 *< I • ' ' I Ki(*' Sh • • • y Si) 

•<t>(si) • • • <l>(si)dsi • • • dsi\. 
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If we assume that am = l, di = 0 for i = l, 2, • • • , m — 1, that is, if we 
consider 

<t>(x) = X f(x) + 1 • • • I Km(x, su • • • , *m) 

•0($i) • • • <t>(sm)dsi * • • dsm\, 

we know that it has at least one solution, and that this solution may 
belong to a finite or an infinite eigenvalue. The homogeneous equation 

<t>(%) = X I • • • I Km(x, Slt • • • , $ m ) * ( $ l ) • * * <K$m)dSi • • • dsmy 

however, has always at least one finite eigenvalue. In this case namely 
(see (6)) 

J(vn) = 2em I Gm(x, vn)vn{x)dx> 

so that 
2 r 2 N2 

dn = — I Gm(x, <t>n)<t>n(x)dx = —"T~~ 

m + 1J m + 1 \n 

or 
X n - 4 = (2/(m+l))N2. 

But since the functional 

1 • J{v) = I • • • I Km(Xy $ ! , • • • , 5») 
2(m+ 1) 

-v{Si) • • • v(sm)dxdsi • • • dsOT, 
iTm^O, vÇÎH2, certainly has a minimum J differing from zero, 

2N2 

X = lim X* = -
n-+oo #(*» + 1) 

is finite. 
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