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Let f(t) be a function on (0, 1) to the complex Banach space B. 
Bochner has shown that the older theory of Fourier series carries over 
to functions of this character, but breaks down in the fundamental L2 

theory [l, pp. 273-276].1 

Suppose ƒ(/) belongs to L2 in the sense of Bochner [l]. Define 

(1) cn = \ f(f)e2*intdt. 
Jo 

We should expect that the Parseval relation carries over, or at least 
that the Bessel inequality 

(2) EIWM fll/olN 
J o 

is valid. This, however, is not the case; for suitable B we may have 
Z lk | | 2 =«> [1, PP. 275-276]. 

In this note we detect the root of the trouble by proving that for 
the validity of (2), B must possess a special character. 

THEOREM. If (2) is valid for allf{f) in L2 then B is unitary, and con-
versely. 

B is unitary if it admits a scalar product with the usual properties 
[3] (cf. the "normed ring" of Gelfand [2]). 

The latter part of the theorem is trivial; we need only apply the 
classical proof with notational modifications [4, p. 58]. 

To establish the sufficiency suppose a and b are elements of B> 
Define 

= la, (0, 1/2), 
J{ 2b, (1/2, 1). 

Then 

(3) f1\\M\\idt=2[\\a\\> + \\b\\*]. 
J o 

By (i) we have 
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1 Numbers in brackets refer to the references listed at the end of the paper. 
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Co = a + b, 

C2n = 0, fl > 0 

£2n+i = (b — a)2/ir(2n + l)i. 
Then 

(4) Zlkn||2 = |k + i||2 + ||a~&|h, 

since 

~ (2» + iy 4 ' 

By (2), (3), (4) 

(5) ll« + &ll, + ll«-*ll1S2[||a||» + ||j||*]. 

Replace a by a+J, 6 by a — 6 ; this simply reverses the inequality of (5). 
Then for all a, & 

||a + »||» + | |a-i| |»-2I1|«||« +||*||»]. 

Hence B is unitary [3]. 
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