ON A THEOREM OF BOHR AND PÁL

R. SALEM

Let D be the domain bounded by a simple closed plane Jordan curve of equations x = f(t), y = g(t), where f and g are continuous and of period 2π . Fejér $[1]^1$ has proved that the power series representing the function mapping conformally the interior of the unit circle |z| < 1into D converges uniformly on the circle |z|=1; hence that there exists a continuous strictly increasing function $t(\theta)$ $(t(0) = 0, t(2\pi) = 2\pi)$ such that the Fourier series of $F(\theta) = f(t(\theta))$ and of $G(\theta) = g(t(\theta))$ converge uniformly for $0 \le \theta \le 2\pi$. Using this theorem, J. Pál [2] has proved that given any continuous function $\phi(t)$ of period 2π there exists a function $t(\theta)$ of the above described type such that the Fourier series of $\phi(t(\theta))$ converges everywhere, and uniformly in the interval $\delta \leq \theta \leq 2\pi - \delta$, for any positive δ . H. Bohr [3] has removed the restriction on the uniform convergence in Pál's theorem by proving that the function $t(\theta)$ can be chosen such that the Fourier series of $\phi(t(\theta))$ converges uniformly for $0 \le \theta \le 2\pi$. Bohr's argument involves some delicate considerations. The purpose of this paper is to give a short and simple proof of Bohr's result.

Let $\phi(t)$ be continuous, and of period 2π . Without loss of generality we can, by adding to ϕ a suitable constant, assume that $\int_0^{2\pi} \phi(t) dt = 0$. Then there are values of t for which $\phi(t)$ vanishes and we can assume that $t \equiv 0 \pmod{2\pi}$ is one of these values. Thus $\phi(0) = \phi(2\pi) = 0$. The mean value of the function being zero, there exists at least another point a $(0 < a < 2\pi)$ such that $\phi(a) = 0$.

Suppose first that, in the open interval $(0, 2\pi)$, a is the only point at which $\phi(t)$ vanishes. Then $\phi(t)$ is strictly positive in one of the open intervals (0, a), $(a, 2\pi)$, and strictly negative in the other one. Let $\alpha(t)$ be any function, continuous, of period 2π , such that $\alpha(0) = \alpha(2\pi) = 0$ and such that $\alpha(t)$ is strictly increasing in (0, a) and strictly decreasing in $(a, 2\pi)$. Then the equations $x = \alpha(t)$, $y = \phi(t)$ represent a simple closed Jordan curve and we have only to apply the theorem of Fejér quoted above to get our result for the function $\phi(t)$.

Suppose now that a is not the only point in the open interval $(0, 2\pi)$ at which $\phi(t)$ vanishes. Let M_1 be the maximum of $|\phi(t)|$ for $0 \le t \le a$ and let t_1 be a point $(0 < t_1 < a)$ such that $|\phi(t_1)| = M_1$. In the same way let M_2 be the maximum of $|\phi(t)|$ in $a \le t \le 2\pi$ and let t_2 be

Presented to the Society, February 26, 1944; received by the editors December 30, 1943.

¹ Numbers in brackets refer to the references cited at the end of the paper.

580 R. SALEM

a point $(a < t_2 < 2\pi)$ such that $|\phi(t_2)| = M_2$. Consider the function $\omega(t)$, continuous, of period 2π , and defined for every t $(0 \le t \le 2\pi)$ as follows:

$$\omega(t) = \max_{0 \le t' \le t} |\phi(t')| + \sin(\pi t/a) \qquad \text{for } 0 \le t \le t_1,$$

$$\omega(t) = \max_{t \le t' \le a} |\phi(t')| + \sin(\pi t/a) \qquad \text{for } t_1 \le t \le a,$$

and in the same way

$$\omega(t) = -\max_{a \le t' \le t} |\phi(t')| - \sin[\pi(t-a)/(2\pi-a)] \quad \text{for } a \le t \le t_2,$$

$$\omega(t) = -\max_{t \le t' \le 2\pi} |\phi(t')| - \sin[\pi(t-a)/(2\pi-a)] \quad \text{for } t_2 \le t \le 2\pi,$$

where the maxima are taken with respect to t'.

It is immediately seen that $\omega(t)$ is of bounded variation, that $\phi_1(t) = \phi(t) + \omega(t)$ vanishes only at t = 0, t = a, $t = 2\pi$, for $0 \le t \le 2\pi$, and that $\phi_1(t)$ is strictly positive in the open interval (0, a) and strictly negative in the open interval $(a, 2\pi)$. Hence applying our first result we can find a function $t(\theta)$ of the above described type such that the Fourier series of $\phi_1(t(\theta))$ converges uniformly for $0 \le \theta \le 2\pi$. But since $\omega(t)$ is continuous and of bounded variation the same result holds for $\phi(t)$, which proves the theorem.

REFERENCES

- 1. L. Fejér, La convergence sur son cercle de convergence d'une série de puissances effectuant une representation conforme du cercle sur le plan simple, C. R. Acad. Sci. Paris vol. 156 (1913) pp. 46-49.
- 2. J. Pál, Sur des transformations de fonctions qui font converger leurs séries de Fourier, C. R. Acad. Sci. Paris vol. 158 (1914) pp. 101-103.
 - 3. H. Bohr, Über ein Satz von J. Pál, Acta Univ. Szeged. vol. 7 (1935) pp. 129-135.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND HARVARD UNIVERSITY