
SIMPLIFIED TECHNIQUE FOR CONSTRUCTING 
ORTHONORMAL FUNCTIONS 

M. O. PEACH 

1. Introduction. An orthonormalization process starts with a set of 
linearly independent functions 

fh ƒ2, • • • 1 

and the set of complex conjugate functions 

fu ƒ2, • • • , 

all defined over a given region R. From these are constructed a set 
of functions 

and the set of complex conjugate functions 

ih Ia» • • • • 

defined over R and such that 

J * (0 , if m = tiy 

B U , 11 ni ?* n. 
The standard method1 of constructing orthonormal functions, while 
completely satisfying logically, has certain practical disadvantages. 
For example, if the integrations must be done numerically (as would 
be necessary if either the ƒ»• or the boundary of R were complicated 
functions, or if the ƒ* were tabular functions) then the mere tabulation 
of the intermediate functions which appear becomes burdensome. 
One would prefer to perform the necessary integrations on the origi­
nal functions ƒ»• and then proceed by a purely algebraic or numerical 
proces3 to obtain the gi. This can be done. If we let Ni be the numera­
tor and Di the denominator of the orthonormal function gi, and if we 
put Fij—fitfiJjdR, then the standard orthonormalization process can 
be shown, by simple algebra, to result in the following: 

Ni = ƒ1, D\ = Flh 

N2 = 
I <̂ 21 / 2 

Presented to the Society, September 13, 1943; received by the editors August 18, 
1943, and, in revised form, December 8, 1943. 

1 Courant and Hubert, Methoden der matetnatischen Physik, vol. 1, p. 41. 
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F29 

Fn 

F 21 

Fn 
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Fit 1 

F 23 1 

Fn I 

Fzs 1 

The next quantities NA and DA would each occupy eight lines; N$ and 
D$ sixteen lines, and so on. The quantity NA would be a second order 
determinant whose elements would also be second order determi­
nants, which in turn would have as elements second order deter­
minants whose elements would be the Fa and ƒ*. We observe that 
the construction of Ni and D* reduces to the successive evaluation 
of second order determinants. All determinants are obtained from a 
matrix of the original quantities F%j and ƒ» by a uniform and simple 
procedure which is described later as the "process P . " 

The present paper generalizes the above observation into a tech­
nique which (a) provides a definite arrangement of work which mini­
mizes repetition of symbols and lessens the chance of computational 
errors, (b) can be used by a person whose mathematical training ex­
tends no further than a knowledge of the algebraic rules of sign, (c) is 
adapted to the use of modern computing machines. 

To carry through the proof of the method, it is necessary to intro­
duce a more compact notation than that used above. Therefore the 
proof is somewhat abstract, so we illustrate the extreme simplicity 
of the final result by an example, namely, the evaluation of the first 
four Legendre polynomials. The advantages of the method become 
more pronounced as the number of orthonormal functions desired in­
creases; but space limitations forbid consideration of more than four. 

2. Example, We shall construct the first four orthonormal functions 
corresponding to the linearly independent set of functions l,x,x2, • • -, 
and the region — l ^ ^ ^ + l . 

Using the standard notation (ƒ, g) —JRf{x)g{x)dR we obtain by in­
tegration (1, 1) =2.000, (1, * ) = 0 , (1, x2) =0.667, (1, ^ 8 ) = 0 , (xf x) 
= 0.667, (*, x 2 )=0 , (*, xz) =0.400, (x2, x2) =0.400, (x2, * 8 ) = 0 , 
(xz, xz) =0.286. With these values as elements we form a symmetric 
determinant of order four, and adjoin to it the unit matrix of order 
four, thus obtaining the following 4 X 8 Matrix No. 1: 

Z>8 = F] IV 
Fn F12 

F21 F22 
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0 

0.667 

0 

0 

0.667 

0 
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0.667 

0 

0.400 

0 

0 

0.400 

0 

0.286 

1.000 

0 

0 

0 

0 

1.000 

0 

0 

0 

0 

1.000 

0 

0 

0 

0 

1.000 

Now for every element not in either the first row or first column 
we can define a determinant of order two by blotting out all rows and 
all columns except those containing either the element under con­
sideration or the leading element of the matrix. For example, associ­
ated with the element 0.400 appearing in the third row and third 
column is the determinant 

2.000 

0.667 

0.667 

0.400 
+ 0.356. 

All such determinants are evaluated and the quantities so obtained 
are placed in the same position as their associated elements of Matrix 
No. 1, thus forming a 3X7 Matrix No. 2: 

+ 1.334 0 +0.800 
0 +0.356 0 

+0.800 0 +0.571 

0 +2.000 0 0 

-0.667 0 +2.000 0 

0 0 0 + 2 . 0 0 0 

This is treated in the same way as Matrix No. 1, thus forming the 
2X6 Matrix No. 3: 

+0.474 0 1 -0.889 0 +2.667 0 

0 +0.122 I 0 -1.600 0 +2.667 

In similar fashion we form the 1X5 Matrix No. 4: 

H+0.0581 0 -0.759 0 +1.264||. 

The rth orthonormal function can now be written down as a frac­
tion whose denominator is the square root of the product of the lead­
ing elements of all the matrices up to and including the rth matrix, 
and whose numerator is a polynomial in the original functions 
1, x, x2, • • • , with coefficients the last n elements in the top row of 
the rth matrix. The first four are : 

g i ( » = 

g2v» = 

M + 0-X+ 0-*2 + 0-*3 

(2.000)1'2 

0 1 + 2.000*+ 0-a 2 + 0-*8 

(2.000 X 1.334)1/2 

= 0.707, 

= 1.222a;, 
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0.790 4- 2.37a:2, 

-0.280a; + 4.67 a:3. 

_ ( - 0.889)-1 +O-a + 2.667a:2 + O-*8 _ 

~ (2.000 X 1.334X0.474)«» ~ 

0 1 + ( - 0.759)a: + 0-a;2 + 1.264a:8 

PA(%) = = 

(2.000 X 1.334 X 0.474 X 0.058)4'2 

In actual computation the original matrix is laid out on a large 
sheet with sufficient space to enter the new quantities as they are 
determined, so that when the computation is finished all n matrices 
appear superimposed upon the same sheet. Two L-shaped guides pre­
vent errors in picking out the elements of each determinant. It is 
seen that the unit operation is the evaluation of a second order deter­
minant, which operation requires but slight mathematical knowledge. 
This operation can be performed as a single step on most modern 
computing machines without writing down the intermediate products. 

3. The process P. Let us be given an nth order determinant 

P> 9 = 1. ' D1 = I d\ n, 
where the element dl>q lies in the pth row and qth column. We define 
the process P by the functional equation 

P(dl,q) = 4 . >» Î = 2, n, 
where 

#».a — 
di,i 

*P.l 

di,i 

Notice that P(dltl) and P(d\>a) are not defined. Suppressing these un­
defined quantities we form a determinant of order n — 1 

z>2 = P, g = 2, 

Ordinarily, we would regard this determinant as possessing rows and 
columns numbered 1, 2, • • • , (» — 1). It is more convenient for our 
present purpose to regard the first row and first column as being ab­
sent, so we agree instead that D2 contains rows and columns num­
bered 2, 3, • • • , n. With this convention, we complete the definition 
of D2 by saying that the element d2

v>a lies in the £th row (row num­
bered p) and qth column (column numbered q) of the determinant D2. 

In a similar way we define 

P\dl,Q) = P(4.«) = 
,2 

02,2 
lP,2 

d2,q 
— ^P.fl» pf q = 3 , n, 
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and, in general: 

Also: 

Pr~l{Dl) = Dr = | dr
p,q\, p , q = r,---,n. 

Notice that P(dr
p>s) and P(dr

s>a) are not defined, when s<r. We 
agree that Dr is of order n—r+1 and contains rows and columns 
numbered r, r+l> * * • , w, the element dPtQ lying in the £th row (row 
numbered p) and the qth column (column numbered q). This conven­
tion as to the suppression of undefined quantities and the numbering 
of elements will be extended to all determinants used in this paper. 

Suppose now that the elements in the nth column of Dl are inte-
grable functions defined over a given region JR, while all other elements 
are constants. Denote these functions by 

dP.n = f pi 1 -S P -S n. 

Let g be an arbitrary integrable function defined over R. Then, by the 
simple properties of determinants, it follows easily that 

(a) The elements in the nth column of Dr are linear combinations 
of the functions ƒ», 

(b) JRg-DrdR differs from Dr only in that every ƒi appearing in Dr 

is replaced by the quantity JRg-fidR, 
(c) JRg-P*mdR = P'{JRg-DHR). 

4. Proof of the method. Let us be given a linearly independent set 
of complex functions of real variables defined in a given region R, and 
integrable over R: 

ƒ = fu ƒ2, • • • , fn, • • • . 

Form the set of conjugate complex functions: 

ƒ = fu f21 • • • , ƒ», • • • . 

Define the three determinants of order n : 

1 1 1 / * ~ 

D = I dp,q I, dPtQ = I fpfqdR, 
J R 

F = I IP,Q I » fp.q — dP,qt q 7* n, 

Jp,n =* fpt 

y-1 

ör-1 y-1 y-1 == <L A ? = ', 

p , q = 1, • • • , », 

ƒ>, g = 1, • • • , n, 
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F = I ƒ*.« I y ƒ*.« = dp.*> P ?* n, 

Jn,q == Jq* 

!>, q = 1, 

Define F'^P'-^F1) and Fr = Pr~l(Fl). Define /;,a as the element ly­
ing in the pth row and qth column of Fr, and fv,q as the element lying 
in the pth row and gth column of "Fr. 

We now prove in succession a set of results to culminate in our main 
theorem, Theorem J, and its corollary. 

THEOREMA. fRfr
Ptn'IrdR^d^rtifr^p^n. 

PROOF. fRfP,n • frdR = fRP'-l(fl,n) • JrdR = P^{JRFP • JrdR) 
=P r - 1 Pj , r =^ , r , by (c) of §3 and definitions. 

THEOREM B. JR^'JAR^O, ifr+l£p£n, 

PROOF: 

ffT»-!rdR= f 
^l>»r JP*n 

'JrdR, 

C f fr.n'frdR 
J R 

tp,r I fp.n'frdR 
J R 

= 0, 

since, by Theorem A, the last column is identical to the first. 

THEOREM C. fRfP,n'JsdR = 0t ifs<r£p£n. 

PROOF. Assume the theorem true for r—k. Then 

i. f^n-f.dR = 
/jfe.fc I fk,n'f* 

J R 

fp>k I Jp,n'J*{ 

J R 

dR 

dR 

By hypothesis the elements in the last column are zeros, and thus the 
theorem holds for fe + 1. By Theorem B it holds for r=5+1, hence it 
holds for all r satisfying the conditions of the theorem. 

THEOREM D. fRfitn'JsdR = 0 if s<n and equals dn
n,n if $~n. 

This follows from Theorems A and C by placing r—p = n. 
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THEOREM E. An analogue to each of the previous theorems is obtained 
by taking conjugates of each side of the respective equations. 

THEOREM F. fRflnJlndR=JIUdss,s. 

PkooF. Write 
n 

fl,n = ]C A8fs, A8 = constants. 
Then 

f flnf^AsldR =Y,AA fln-fsdR = E A8Q8i 
•/JB s=l *=1 JB ««I 

where 
if s 7* n, 
if $ = ». \an,m 

We see that if we replace ]8 by Q8 we change f£,n into fnf!l,n'f%,<ndR. 
Suppose we make this replacement in the determinant T1 forming a 
new determinant Q1. Then since Pn-1(Fl)=Tn it follows that 
pn-i(Qi)=Qn where the element qZ,n=fRfLn'fï,ndR of Qn corre­
sponds to the element f%,n of Tn. Consider (51, It is identical to 251 

except that all the elements in the bottom row, except the one in the 
last column, are replaced by zeros. Therefore the process P applied 
to ql,n of this determinant reduces to multiplication. We have 

1 n 1 
R(ün,n) = (dn,n)(ditl), 

P (Ön.n) = (dntn)(di,i)(d2,2)9 

p (<£.»)= IK. . . 
«=i 

THEOREM G. Suppose that in addition to the determinants already 
mentioned we have a determinant T?°l defined exactly the same as 7l 

except that it is of order m where m^n. Then 

i fnin'fm,mdR = 0, M y* H. 
B 

PROOF. Suppose m<n. Then 
m 

TiT.m = J2 A°*f*> £ == constants, 
8=1 

flnJL^ldR = Z ^ I fln-fÂR = 0, 
B «~>1 « - 1 J R 

by Theorem D. 
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If m>n we expand ƒ£,„ as a linear combination of the functions 
f8, s « I , 2, • • • , n, and use the conjugate theorem of Theorem D. 

THEOREM H. The function 

gn = fn,n / ( 11^,*) 

is the nth orthonormal function for the given set f and the given do­
main R. 

This follows immediately from Theorems F and G. 

THEOREM J. Let us adjoin the unit matrix of order n to the deter mi-
nant Dl and apply the process Pn~l to the combined matrix. Form a 
matrix whose first row is the top row of the unit matrix, whose second row 
is the top row of the first transform of the unit matrix, and, in general, 
whose rth row is the top row of the (r — l)st transform of the unit matrix. 
Let this matrix be denoted by 

$ 1 , 1 $ 1 , 2 

$ 2 , 1 $ 2 , 2 

$ n , l $ n , 2 

$ l , n 

$2 ,w 

•&n,n 

Then the nth orthonormal function is given by. 

$w,l/l + $71,2/2 + ' * ' + Bntnfn 
gn = 

(dl,l)(d2,2) (dn,n) 

PROOF. We know jfJ» = *»,i/i+*»,2/2+ • • • +kn,nfn, where the kn,8 

are constants. To evaluate kn,8 we put f 8 = 1 and all other ƒ=0 and 
see what happens to ƒ£„. Suppose we make these replacements in F1 

forming a new determinant K1, that is, we replace the nth column 
of F1 by the 5th column of the unit matrix. Then Pn(Fx) is iden­
tical to Pn{Kx) except that its nth column is replaced by the 5th 
column of the transformed unit matrix. In particular the element /£n 

is replaced by the quantity Bn,8. Hence &n,s = $w,s and the theorem 
is proved. 

COROLLARY. In Theorem J it is also true that 

gr = 

where r<n. 

$ r , l / l + $r,2/2 + * ' * + Br,nfn 

(dl,1X^2,2) * ' • (dr%r) 
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PROOF. Apply Theorem J for the case w==r. We obtain for gr an 
expression which differs from the one just written only in the fact that 
the terms Brtr+ifr+i+Brtr+2fr+2+ • • • +Br,nfn are missing from its 
numerator. But the coefficients J3r,, = 0 when r<s. Hence the two 
expressions are equal. 

REMARK. The generalization of the method to orthonormalization 
with respect to a general norming or weight function p is obvious. 
One applies the process described to the functions (p)ll2fi and ob­
tains functions g% (=linear combinations of the (p)ll2fi) which are 
orthonormal with respect to the weight function unity. Dividing 
through by the common factor (p)112 one forms functions gi(p)~~lt* 
which are orthonormal with respect to p. 

CARNEGIE INSTITUTE OF TECHNOLOGY 

VERTICES OF PLANE CURVES 

S. B. JACKSON 

1. Introduction. The Four-Vertex Theorem, proved first by Mukho-
padhyaya [l],1 states that on any oval, not a circle, there are at 
least four vertices, that is, extrema of the curvature. This result was 
extended by Fog [2] and Graustein [3] to any simple closed curve 
with continuous curvature. The discussion by Graustein makes it 
clear that the Four-Vertex Theorem is valid also for a very large 
number of non-simple curves. Indeed the class of curves having only 
two vertices is relatively quite small. The main object of the present 
paper is to characterize geometrically, as far as possible, the curves 
with just two vertices. It is thus a proof of the Four-Vertex Theorem 
by exclusion. 

Since a curve with just two vertices consists of two arcs of mono­
tone curvature, a study is made of such arcs (§2). The most useful 
fact is that this monotone character of an arc is invariant under direct 
circular transformations. The property that a point be a vertex of a 
curve is similarly invariant. This makes it possible to simplify many 
of the discussions by suitably chosen transformations. Monotone arcs 
are found to be essentially simple and possess a spiral character. 

The existence of vertices on certain types of arcs is established (§4) 

Presented to the Society, April 29,1944; received by the editors February 15,1944. 
1 Numbers in brackets refer to the Bibliography at the end of the paper. 


