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This paper deals with the following theorem. 

THEOREM. Let g(x) be a bounded Borel measurable function defined 
everywhere on ( — oo, oo). Let pn(x) be a sequence of normalized func­
tions,1 pn(E:V, such that 

(1) ! > ( # » ) < « . 

Then ]Cn-iPn(ff) is absolutely and uniformly convergent to a normalized 
function p(x) £ V, and 

OO •» 00 / • 00 

(2) X I g(x)dpn(x) = I g(x)dp(x). 
w = l J -oo ^ -oo 

We shall first prove this theorem in the following special cases: 
(a) g(x) is a bounded piecewise absolutely continuous function2 in 

( - °°> °°) . 
(b) g{x) is continuous in a finite interval and vanishes identically 

outside this finite interval. (It need not necessarily be continuous at 
the end points of the interval.) 

(c) g(x) is a bounded continuous function in (— oo, oo). 
First let us prove our assertion concerning p(x). Since pn(x) are 

normalized, we have3 J2%=i\ pn(x) | <&n=iPn<&n=iV{pn) where Pn is 
the upper bound of | ƒ>,»(#) | f ° r ~~ °° <x< °°. Because of (1), it fol­
lows that the series ^n-ipnix) is absolutely and uniformly con­
vergent. Let p(x) be the limit function. Evidently p(x) is right-
continuous and normalized. To show that p{x)ÇiV it is sufficient to 
show that p{x) is of bounded variation on (—<*>, <*>). For £ > 0 and 
any subdivision of (•—£, £), — £ = # o < # i < • • • <xm-i<xm = %, we 

Received by the editors March 16, 1943. This was Part I of the author's doctor's 
thesis written at the Massachusetts Institute of Technology. Thanks are due to Pro­
fessors W. T. Martin and R. H. Cameron for their supervision of the research. 

1 P(%) G y means that p(x) is right-continuous and of bounded variation on the 
infinite interval (— oo, oo). It is normalized if p(0) = 0. V(pn) denotes the total varia­
tion of pn over ( — oo, oo). 

2 ƒ(x) is piecewise absolutely continuous in ( — oo, oo ) if we can divide ( — oo, oo ) 
into a finite number of intervals such that in each of these intervals/(x) is absolutely 
continuous. 

3 « < < » j s to be read "is dominated termwise by. " 

760 



LEBESGUE-STIELTJES INTEGRALS 761 

have 
m oo m 

S | P(XH-l) "" P(Xi) | ^ Z) Z) I Pn(*i+l) - Pn(Xi) | . 
t = 0 n==0 i = 0 

This implies that4 V(p; - ? , O^-iViPn', - * , Ö ^ T - i ^ ) . 
Hence F(£) < oo. 

Let Xi (i= 1, 2, • • • , JV) be the points of discontinuity of g(x) un­
der condition (a), where Xi<x2< • • • <XN. Then g(#) is absolutely 
continuous on Xi<x<xi+i and g(x) =f£i+ogi (ff)d#+g(ff»+0), where 
gi(#) is the absolutely continuous part of g(x) in the Lebesgue de­
composition. For the infinite interval we then have 

/

oo /» oo N 

dg(x) = I gi(x)dx+ X ) i ( ^ ) 
- 0 0 ^ — 0 0 1 = 1 

where j(xi) is the jump of g(x) at # = #,-. Since g(x) is bounded, it is 
evident that J-«>g{x)dp(x) exists. In addition we have 

(3) E f W I g(x) I I #«(*) I ̂  G- Z F(#„) < °° Z f" U(*) I I <*#.(*) I ^ G - S ^ W 
n = l J —oo n = l 

where G = u.b._oo<a;<00 \g(x)\. H e n c e ^ ^ / J ^ g ^ ) ^ ^ ) exists. 
We shall now show that (2) holds for case (a). Let A be any posi­

tive number. Then because of the above remark we have 

Z f g(x)dpn(x) = T,ig(A)pn(A)-g(;-A)pn(-A) 
n^l J -A n = l V 

I 

Pn{00)dg{x) 

( 4 ) = g(A)p(A) - g{- A)p(- A) 
oo /%A oo N 

- Z I Pn(0C)g!(x)dx - J2 12pn(Xi)j(Xi). 

By the general convergence theorem5 of Lebesgue, this becomes 

E f g(x)dPn(x) = g ( , 4 ) ^ ) - S ( - A)p{- A) 
n=lJ~A çA N 

(5) - I p{x)g({x)dx - ^2p(xi)j(xi) 
J -A i = l 

J -A 

•A 

A 

g(x)dp(x). 

4 V(pn; — £, 0 denotes the total variation of £n over ( — £, £)• 
5 E. C. Titchmarsh, Theory of functions, Oxford, 2nd éd., p. 345. 
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Letting A —» <*>, we get 

00 r* A /» oo 

(6) lim X) I g{x)dpn{x) = I g(x)dp(x). 
4->°o %=!**-*A • ' - o o 

Now consider 

» I / i 4 I oo •• A 

E I g(x)dpn(x) \«J1\ | g(«) | | #„0) | 
n = l I «̂  —J! I » = 1 J -A 

«G-Jt f \dp»(*)\ 
„_1 J -A 

«G-itv(Pn). 
n = l 

Thus^n-if-Ag(%)dpn(x) is absolutely and uniformly convergent in A. 
Hence by a known theorem,6 we have 

oo /» A oo « M 
l i m IL I g(%)dpn(%) = 23 I g(x)dpn(x). 

il-*» n=lJ-A n=l«^-oo 

Combining this with (6), we get 

oo / » 00 / » oo 

Z) I g(x)dpn(x) = I g(x)dp(x), 
w = l • / _ o o «^ —oo 

which concludes case (a). 
To prove the theorem for case (b), it is sufficient to show that the 

expression 

N /* oo N /* oo s* oo 

Z) I g(x)dpn(x) - I g(x)dp(x) 
n = l ^ —oo *^ —oo 

can be made arbitrarily small for all sufficiently large values of N. 
Let [Mi, M2] be the interval within which g(x) is continuous. By the 
Weierstrass approximation theorem, there exists a sequence of poly­
nomials gm(x) which converge uniformly to g(x) in [Mi, M2\ Consider 
the functions defined by 

(gm(x), Mi S X ^ if2, 

lo, otherwise. 

We note that fm(x) for w = l , 2, • • • all satisfy the hypothesis (a). 
Hence we have 

6 See Hobson, Theory of f unctions of a real variable, vol. 2, p. 121. 
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(7) 
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00 / » 00 / » 00 

Z I fm(x)dpn(x) = I fm(%)dp(x) 
n = l «^ —oo «^ - o o 
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for m = l, 2, • • • . Furthermore we have 
JV /*oo 

(8) 

JSI /» oo / » o o I 

X I g(x)dpn{x) - I g(x)dp(x) 
n = l «^ —oo «J — oo I 

I
JV /» oo JV /» oo 

Z I g{x)dpn{x) - Z I fm{x)dpn(x) 
n = l •/ _ Q O n==l «^ —oo 

I JV /• oo /» oo 
+ Z I fm(x)dpn(x) — I fm(x)dp(x) 

I - n = l ^ — oo ^ —oo 

1 /» 00 •» 00 

I fm(x)dp(x) - I g(x)dp(x) 
J —oo *J —oo Because of (7) it follows that 

I JV /» oo N p oo 

E I g(x)dpn{x) - 52 I Mx)dpn(x) 
n = l ^ —oo w = l v — oo 

where €jv(ra)—»0 as N—><x> for every m = l, 2, • • • 
verges uniformly to g(x) in [Mi, M2] we also have 

I /» 00 /» 00 

I Mx)dp(x) - I g{x)dp{x) 
J - 0 0 ^ - 0 0 

< €JVO), 

. Since jfm(#) con-

(10) 

J»M2 

{gm(*) ~ gO)}#0) 
. Mi 

^ em-7(p) = €W', 

where em==maxMi^a^jif2|gm--g| and where ej—»0 when m—>«> since 
F(p) is finite. Also 

I JV /» 00 JV /» 00 j 

Z I g(x)dpn(x) — Z ) I fm(x)dpn(x) 
n—1 J —00 n = l • ' —00 I 

^ Z I {*(*) - gm(#)}#n(#) 
I n = l J Mi 

Z I dpn(x) 
n=»l •/ JWi 

(ID 
â €m 

n=»l ^ JWi 

00 

â €m- Z ^(AO = **" 

where €m"—»0 when m—>oo, since Z"-i^(£n) is finite 
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Now let ô be an arbitrary positive number and take m large enough 
so that 

(12) eB' + €„" < 25/3. 

With m fixed, take N large enough so that 

(13) eN+v(tn) < a/3, v = 0, 1, 2, • • • . 

I t follows that [using (12) and (13) in (8)] 

JV / » 00 / » 00 

S I g(*)dpn(x) - I g(x)dp(x) 
n==l • / — oo •* —oo 

< 8 

for all sufficiently large JV and arbitrary ô > 0, 
Coming to case (c), let a be a positive number and define 

otherwise. '•^ = io, 
Since ga(x) satisfies the conditions of hypothesis (b), we have 

00 / » 00 /% 00 

(14) X I ga(x)dpn(x) = I ga(x)dp(x). 

w=l ^ -oo ^ -oo 

By dominated convergence we have 

/

00 f% 00 

gtt(x)dp(x) = I g(x)dp(x). 
« . - -w -00 *^ —00 

Let G = u.b.-oo<*<oo| g0*01. Then 
00 I / | 0 0 I 00 / » 00 

E I ga{x)dpn{x) \«Yt\ I «(*) I I #»(*) I 
n = l I *^ —oo I n = l J —oo 

00 

<<G'Z%). 
w = l 

Thus ^2n^if^ooga(x)dpn(x) converges absolutely and uniformly in a, 
and it follows that 

00 /% 00 00 ƒ » 00 

lim £ ) I ga(x)dpn(x) = ] £ Km I ga(x)dpn(x) 
a—co n = l "̂  — oo w = l a=oo *^ — oo 

(16) 
00 / » 00 

= Z) I g(%)dpn(x), 
n = l ^ -oo 

the last step being justified by the theorem on dominated con ver-
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gence. Combining (14), (15) and (16), we obtain (2). This proves the 
theorem under hypothesis (c). 

To complete the proof of the theorem we need the following 
lemma. 

LEMMA. Let pn(x) satisfy the conditions of the theorem. Suppose (2) 
is true for all bounded functions g(x) of Baire class less than a. Then 
(2) is true for all bounded f unctions g(x) in the class a. 

Letfj(x) be any convergent sequence in a Baire class ai<a such 
tha,tfj(x) is uniformly bounded. Let limŷ oo fj(%):=f*(%)' Clearly ƒ*(#) 
is also bounded. By hypothesis, we have 

oo y» oo /» oo 

(17) £ I Mx)dpn(x) = I Ux)dp(x) 

for 7 = 1, 2, • • • . By a theorem on bounded convergence, we have 

/

OO /» 00 

Mx)dp(x) = I f*(x)dp(x). 
j -00 J —00 

Consider also 
00 I r » 00 J 00 *% 00 

£ I fi(x)dpn(x) «F- £ | | #„0) | 
n = l I •/ — oo I n = l «J —oo 

= F- £ F ( M 

where F is u.b._oo<*<oo, ,=1,2, — |/X^) | • Hence Y^n-iJ-«>fj{x)dpn{x) 
converges absolutely and uniformly in j . Therefore 

00 *% 00 00 / » 00 

lim 2 2 I fj{x)dpn(x) = X) l i m I fi(%)dpn(x) 
. . y=oo n = l ^ —oo w = l y=oo *^ —oo 

= £ f°°f*(x)dpn(x). 
n = l J —oo 

Combining equations (17), (18) and (19), we get 

Z rnx)dPn(x) = f°°f*(x)dp(x), 
n*=*l */ —oo «J — oo 

which completes the proof of the lemma. 
Finally we return to the original hypothesis. I t is known7 that the 
7 For example, see de la Vallée Poussin, Intégrales de Lebesgue (Borel Monograph), 

1916, pp. 36, 37. 
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set of bounded functions in classes 0, 1, 2, • • • of Baire is the same 
as the set of bounded Borel measurable functions. Under (c) we have 
proved the theorem for any bounded continuous function, that is, 
for bounded functions in class 0 of Baire. By the lemma it holds then 
for functions in classes 0, 1, 2, • • • of Baire and hence for all bounded 
Borel measurable functions. This completes the proof of the theorem. 

We note in the theorem above that the boundedness of g(x) was 
sufficient to insure the existence of the integral f-*g(x)dp(x), pro­
vided that p{x) satisfied the conditions of this theorem. Now we shall 
prove a partial converse of this. 

THEOREM. Let g{x) be a given Borel measurable function defined 
everywhere in ( — oo, oo), with the property that J-*>g(x)dp(x) exists9, 

whenever p(x)ÇzV. Then g(x) is bounded everywhere in ( — oo, oo). 

Let Ew be the set of points x for which n^g(x)<n + l. We shall 
show that the family of non-empty sets En. is finite. 

Suppose the contrary. Then there must exist an infinity of distinct 
xn. since Eni are mutually disjoint. Consider a particular sequence 
XfiQj x n \ i Xri2y , one Xm from each non-empty Eni* 

At this point let us note that given any sequence of integers 
0<ni<n2< • • • there exists a number £ such that XXiV w ! di­
verges and XXil/*4+ 1 converges. In class L put all real numbers p 
such that XXil/^f 'ls divergent. Put all others in i£-class. To the 
jR-class belongs the number 2. The number 0 belongs to the L-class. 
If p belongs to £, then all numbers less than p also belong to L. Thus 
we have a Dedekind cut. Let c be the number defined by this cut. 
Then £«- i l /<" 1 / 2 diverges, while J2til/nc

t
+1/2 converges. Hence 

£ = c--l/2 satisfies the required condition. 
With this in mind, let us return to the proof of the theorem. Using 

the sequence xni defined previously let us form the function 

where 
t==o (m + 1)*+1 

4 U , X < . Xni1 

V.1, X <ÎL Xfit) 

and f is such a number that XXol/(w*+l)*+1 converges and 
] L £ O V ( ^ + 1 ) * diverges. 

Since o)ni(x) is right-continuous and the series uniformly conver-
8 M. H. Stone, Linear transformations in Hubert space, Amer. Math. Soc. Col­

loquium Publications, vol. 15, 1932, p. 206. 
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gent, p(x) is also right-continuous. Also p(x) is a monotone increasing 
function. To show that p(x) G V, we make use of the theorem proved 
earlier. In fact we have 

ƒ 00 • • 00 /» 00 / 00 1 \ 

I dp(x)\ = dp(x) = ld \ £ — - — — a , t ( x ) \ 
00 y» 00 1 

i=oJ-oo (»»•+ l ) f + 1 

= £ 
n (n* + 1)*+1 

To complete the proof of this theorem it is sufficient to show that 
J-*>g(x)dp(x) does not exist for this p(x). Let 

) = ig^y if ' g^ ' ~ M' 
lo , otherwise. 

Then 

ƒ 00 00 1 /% 00 

I £ M O ) I I # 0 ) I = X) "7 , „ , , , , I I «*(*) I <*«»<(*) 
*-0 (»< + l )*+ 1J-oo 

00 1 

t=o (»< + 1)*+1 

wt-
„ " M (ni + i)*+ i 

the first step being justified by the first theorem. Hence 

lim £ , / « ^ I U(*)ll#wl> 
M* =oo n4<M (»< + 1)* + 1 

which proves that the integral does not exist, since the series 
X}£oV( w î+ l )* w a s constructed to be divergent. 
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