ON FIBRE SPACES 733

REFERENCES

1. Zygmund, Trigonomeirical series, chap. 5, p. 123.
2. Ibid., chap. 2, p. 32.

UNIVERSITY OF WISCONSIN

ON FIBRE SPACES. II
RALPH H. FOX

This paper is primarily concerned with fibre mappings! into an
absolute neighborhood retract. Theorem? 3 is a converse of the cover-
ing homotopy theorem; it characterizes fibre mappings (into a com-
pact ANR) as mappings for which the covering homotopy theorem
holds. Theorem 4 is Borsuk’s fibre theorem;? the proof* which I pre-
sent here is new. It seems to me that this theorem is a promising tool
in function-space theory. Also I think that it furnishes conclusive
justification for the generality of the Hurewicz-Steenrod definition
of a fibre space. In fact, a fibre space of the type constructed by
Borsuk’s theorem almost never has a compact base space and almost
never has its fibres of the same topological type.

The common denominator of the proofs of Theorems 3 and 4 is a
property which I call local equiconnectivity. Local equiconnectivity is
a strengthened form of local contractibility and a weakened form of
the absolute neighborhood retract property (Theorems 1 and 2). Defi-
nitions and notations are those of FS. 1.5

Let A be the diagonal subset Y s 5(d, b) of BXB. I shall call the
space B locally equiconnected (or, to be specific, (U, V)-equiconnected)
if there are neighborhoods U and V of A and a homotopy N in B be-
tween the two projections of U which does not move the points of A
and which is uniform?® with respect to V. Precisely:

(1) Ni(bo, by) is defined for all (by, b1) E U,

(2) No(bo, b1) =bo,
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(3) Nu(bo, b1) =by,

(4) Ni(d, b) =0 for every (b, b)) EA, 0=t =1,

(5) there is a 6>0 such that |t—t’| <8 implies that
2 obneuMe(bo, b1), Ner(bo, 1)) C V.
Roughly speaking, B is locally equiconnected if there are paths be-
tween sufficiently nearby points such that the paths depend continu-
ously on the end points.

THEOREM 1. A locally equiconnected space is locally contractible.

Let N be a neighborhood of some point 4; of B and let M denote
the set of points b such that D o<.<ini(bo, b)) CN. By (4), biEM;
a simple continuity argument shows that M is a neighborhood of ;.
Since M is contractible to b, in IV the theorem is proved.

THEOREM 2. 4 compact ANR-set is locally equiconnected.

Let B be a neighborhood retract of the Hilbert parallelotope Q and
let 7 be a retraction of an open neighborhood IV of B onto B. Since
Q— N and B are disjoint compact sets e=d(B, Q—N)/2>0. Let U,
be the closed neighborhood of A determined by the covering of B
by e-spheres and let N (bo, b1) =r((1—28)bo+1tb1) for (be, b)EU,,
0=¢=1. Conditions (1), (2), (3), and (4) are obviously satisfied. Con-
dition (5) follows, for any V, from the compactness of U..

From Theorems 1 and 2 it follows,® for finite dimensional com-
pacta, that local contractibility, local equiconnectivity and the ANR
property are equivalent. For infinite dimensional spaces no more is
known than is implied above.

THEOREM 3 (CONVERSE OF THE COVERING HOMOTOPY THEOREM).
Let B be a (U, V)-equiconnected space and let w EBX. Suppose that for
every mapping g XY and homotopy h in B which is uniform with re-
spect to V and has initial value® wg there exists a covering homotopy
h* in X with initial value g. Then w is o fibre mapping relative to U.

Let &¢(x, b) =Ni(w(x), b). Since & is uniform with respect to V there
is a covering homotopy 4* such that &¢*(x, b) =x. Let ¢(x, b) = hi*(x, b).
Then® ¢ maps #~1(U) continuously into X and w¢(x, b) =b. Since
ko (%, 7(x)) =7(x) it follows that ¢ (x, 7 (x)) = hi*(x, w(x)) = h*(x, 7 (x))
=x. Thus ¢ is a slicing function.

Let 4 be a closed subset of X and let = denote the sectioning opera-

tion w(f) =f|4, fE VX,

6 K. Borsuk, Fund. Math. vol. 19 (1932) p. 240, Theorem 32.
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THEOREM 4 (BORSUK'S FIBRE THEOREM). If A is closed in X and ¥V
is a compact A NR-set then w is a fibre mapping.

By Theorem 2, Y is locally equiconnected and, if it is suitably
metrized, there is a positive number e such that N¢(yo, y1) is defined
whenever d(y,, y1) <e. Let Ty denote the graph of 7w and let T, de-
note the subset of YX¥X Y4 defined by the rule (f, g) €I« when
d(n(f), g) <e. Because Y is compact I' is a neighborhood of T'y. Define

M(f(x), g(x)) for (f, g, 2) ETe X 4,
f(#) for (f, g %) €T X X.

Thus ¢ is a homotopy in Y; each ¥, is defined on the closed subset
C=TXA4ToXX of T XA. But ¢o(f, g, x) =f(x) for every (f, g, x)
€ C, and this map has the extension ¥¢*(f, g, x) =f(x) defined for every
(f, g, x) ET X X. It follows” that ¥, can be extended to I'. X X. Let
¥i* denote an extension of ¥; and set ¢(f, g)(x)=v¥:*(f, g x) for
(f, g) €T and x€X, so that ¢(f, g) € YX for every fixed (f, g) ET.
Then ¢ maps I'c into Y%, 7¢(f, g) =g, ¢(f, m(f)) =f. Thus ¢ is a slicing
function for .

Since the image set of a fibre mapping is necessarily open and
closed in the base space, an example® “E” shows that Theorem 4 is
false for non-compact ANR-sets Y. However if neither X nor Y are
compact (as in “E€”) the topology of ¥¥ (and also of ¥4) depends on
the metrization of ¥. Thus it may be possible (as it is in “E”) to re-
metrize an ANR-set ¥ so as to make the sectioning operations fibre
mappings. It should be observed that Borsuk has shown that Theo-
rem 4 is false (with or without remetrization) if ¥ is not locally con-
tractible.*

vi(f, g %) ={
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