ON REGULAR FAMILIES OF CURVES¹

HASSLER WHITNEY

A family F of non-intersecting curves filling a metric space is called *regular* if, in a neighborhood of any point p, it is homeomorphic with a family of straight lines. We have given in another paper² a necessary and sufficient condition, which we shall call (A') (to be described below), that a family F be regular. We shall prove in this note that the following condition is sufficient:

(A) Given any point p, and a direction on the curve through p, there is an arc pq in this direction with the following property. For every $\epsilon > 0$ there is a $\delta > 0$ such that for any p', with $\rho(p', p) < \delta$, there is an arc p'q' of C(p') such that

$$(1) p'q' \subset V_{\epsilon}(pq), q' \subset V_{\epsilon}(q).$$

The condition (A') is the same, except that after (1), we add:

(2) If r' and s' are on p'q' and $\rho(r', s') < \delta$, then $\delta(r's') < \epsilon$.

From the present theorem it is clear that the families of curves recently defined by Niemitzki³ are regular.

To prove the theorem, suppose (A) holds, but (A') does not. Then the following is true:

- (B) There is a point p, and a direction of the curve C(p), such that for any arc pq on C(p) in this direction, there is an $\epsilon > 0$, such that for any $\delta > 0$, there is a point p', with $\rho(p', p) < \delta$, such that for any q' on C(p'),
 - (3) either $p'q' \oplus V_{\epsilon}(pq)$, or $q' \oplus V_{\epsilon}(q)$,

By a curve, we shall mean here the topological image of an open line segment or of a circle. We shall use $\rho(p, q)$ for distance, $\delta(A)$ for the diameter of the set A, and $V_{\epsilon}(A)$ for the set of all points p, $\rho(p, A) < \epsilon$. Let C(p) mean the curve of F through p.

¹ Presented to the Society, April 27, 1940.

² Annals of Mathematics, (2), vol. 34 (1933), pp. 244–270. We refer to this paper as RF. By RF, Theorem 7A, F is regular as there defined. The converse is proved as follows. By Theorem 17A, there is a cross-section S through p. In a neighborhood of p, the curves are orientable (this is easily seen, for instance, with the help of Theorem 9B). Choose an open subset S' of S, and let U be all points $q' = g'(q, \alpha)$, q in S', $|\alpha| < \epsilon$ (see RF, §15); U is a neighborhood of p, expressed as the product of S' and the open line segment $-\epsilon < \alpha < \epsilon$.

³ V. Niemytzki, Recueil Mathématique de Moscou, vol. 6 (48) (1939), pp. 283–292. We mention two further papers in the subject: H. Whitney, Duke Mathematical Journal, vol. 4 (1938), pp. 222–226, showing that if the curves fill a region in 3-space, a cross-section may be chosen so as to be a 2-cell; W. Kaplan, Duke Mathematical Journal, vol. 7 (1940), pp. 154–185, studying families filling the plane.

(4) or there are points r', s' on p'q' such that $\rho(r', s') < \delta$, and $\delta(r's') \ge \epsilon$.

Choose a point p and a direction on C = C(p), by (B). Choose q on C in this direction, by (A). Choose $\epsilon > 0$ by (B). For each positive integer i, choose δ_i by (A), with ϵ replaced by ϵ/i . Choose p_i by (B), with δ replaced by δ_i . Choose q_i by (A), with p' replaced by p_i ; then

$$(5) p_i q_i \subset V_{\epsilon/i}(pq), q_i \subset V_{\epsilon/i}(q).$$

By (B), as $\epsilon_i < \epsilon$, we may choose p_i' and q_i' on $p_i q_i$ so that

(6)
$$\rho(p_i', q_i') < \delta_i, \quad \delta(p_i' q_i') \ge \epsilon.$$

By (6), we may choose r_i on $p_i'q_i'$ so that $\rho(p_i', r_i) \ge \epsilon/2$. By (5) and (6), we may choose a subsequence so that for some points p' and r on pq,

(7)
$$p'_{\lambda_i} \to p', \qquad q'_{\lambda_i} \to p', \qquad r_{\lambda_i} \to r;$$

then $r \neq p'$. Say, for definiteness, that r is in the direction of q from p'. The set of such points r which are limits of such sequences $\{r_{\lambda_i}\}$ forms a closed set, which, by (5), is in p'q; we shall let r be the point furthest from p'. (It might be q.)

Assuming that (A) holds for the point r and the direction away from p', we shall arrive at a contradiction. Choose a point s on C in this direction from r, by (A). (If C is a closed curve, it might happen that s is on the arc pr.) Choose r' and s' on C just behind and just in front of r, so that r' is on neither pp' nor rs, and s' is not on p'r. We shall show that for any $\epsilon' > 0$ there is an integer j and a point s_j on $p_j'q_j'$ within ϵ' of s'; as s is in pq, by (5), this will contradict the definition of r, and thus prove the theorem.

Set

(8)
$$4\eta = \min \left[\rho(r', rs), 2\epsilon' \right].$$

Choose r_- , r_+ , s_- , s_+ on C in the order $r_-r'r_+rs_-s's_+s$, so that r_- is not in rs and s_+ is not in pr (if C is closed), and so that

(9)
$$r_{-}r'r_{+} \subset V_{\eta}(r'), \quad s_{-}s's_{+} \subset V_{\eta}(s').$$

Set

(10)
$$2\epsilon'' = \min \left[\rho(pr_{-}, r_{+}q), \rho(rs_{-}, s_{+}s), \eta \right].$$

Using r, s, and ϵ'' , choose $\delta'' > 0$ by (A). By (7), we may choose j so that

(11)
$$\epsilon/j < \epsilon'', \ \rho(p_i', p') < \epsilon'', \ \rho(q_i', p') < \epsilon'', \ \rho(r_i, r) < \delta''.$$

By the choice of δ'' , we may choose s^* on $C(r_i)$ so that

$$(12) r_i s^* \subset V_{\epsilon''}(rs), s^* \subset V_{\epsilon''}(s).$$

As $r_i s^*$ is a connected set, (11), (12) and (10) show that there is a point s_i on it such that $\rho(s_i, rs_- + s_+ s) \ge \epsilon''$; hence, by (12), $\rho(s_i, s_- s_+) < \epsilon''$, and by (9),

(13)
$$\rho(s_i, s') < \epsilon'' + \eta < 2\eta \le \epsilon'.$$

By (12) and (8),

$$\rho(r', r_j s_j) > 2\eta.$$

By (5) and (11),

$$p_i' q_i' \subset V_{\epsilon''}(pq).$$

By (11), (10), (5) and (9), there are points p_i^* in $p_i'r_i$ and q_i^* in r_iq_i' such that

(16)
$$\rho(p_i^*, r') < 2\eta, \qquad \rho(q_i^*, r') < 2\eta.$$

By this and (14), the arc $r_i s_i$ is contained in the arc $p_i^* r_i q_i^* \subset p_i' q_i'$. Hence $s_i \subset p_i' q_i'$, which, with (13), gives the contradiction.

HARVARD UNIVERSITY