ON THE FIRST CASE OF FERMAT’S LAST THEOREM
D. H. AND EMMA LEHMER

In 1909 Wieferich [1] proved his celebrated criterion for the first
case of Fermat's last theorem, namely:
The equation

(1) x? + yP = 37, x, ¥, 2 prime to P,
has no solutions unless
(2) 2771 = 1 (mod 7).
Since that time numerous other criteria of the form
3) m?~l = 1 (mod p?)
have been proved by Mirimanoff [2] (for m=3), Vandiver [3] (for

m=35), Frobenius [4], Pollaczek [5], Morishima [6], and Rosser [7]
for all prime values of m <41.

Wieferich’s criterion alone has been applied by Meissner [8] and
Beeger [9] for p<16,000 and was found to be satisfied only for
$=1,093 and 3,511, both of which cases failed to satisfy Mirimanoff’s
criterion.

Until recently no effort has been made to combine these various
criteria in a practical way. Mirimanoff observed, however, in 1910
that his criterion and that of Wieferich could be combined to state
that equation (1) has no solutions for all primes p of the form 238+ 1
or |2¢438|.

In the presence of more criteria this statement can be extended thus:

We call a number an “4, number” (after Western) if it is divisible
by no prime exceeding the nth prime p,. If the criterion (3) has been
established for all m <p,, then equation (1) does not hold if p is the
sum or difference of two 4, numbers [10]. Since all the numbers less
than p,,; are 4, numbers, we may state that equation (1) has no
solution for any prime in a region where the 4, numbers are so dense
that they do not differ by more than 2p,,1— 1. This method was used
in 1938 by A. E. Western [11] to show that (1) is impossible for
16,000 < » < 100,000.

A more powerful method of combining the criteria was suggested
recently by Rosser [12], who observes that while the congruence

4) P71 =1 (mod $?)
has only (p—1)/2 solutions less than $?/2, every A, number is a
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solution of (4) if (1) holds and if (3) has been established as far as
m=2p,. Hence if ¢, (x) denotes the number of 4, numbers not exceed-
ing x, then

() oa(p?/2) = (p — 1)/2,

a condition which cannot hold for small p’s if the 4, numbers are
sufficiently dense.

Other inequalities of this kind can be derived by separating the
solutions of (4) into classes. We shall do this here only in the case in
which the solutions are distinguished by their parity. For every posi-
tive odd solution w< p?/3 of (4) there exists also a solution (p?—w)/2
(using Wieferich’s criterion) which lies between $%/3 and p?/2, and
hence differs from w. The number (p—1)/2 of solutions of (4) not
exceeding p?/2 is then at least the number of even 4, numbers less
than p?/3 plus twice the number of odd 4, numbers less than p?/3.
This can be written as

(6) oa(9%/3) + ¢:5(p?/3) = (p — 1)/2
where ¢} (x) denotes the number of odd 4, numbers less than x.

If one is to apply an inequality such as (5) or (6) outside the limit
of existing tables [13] of 4, numbers, it is necessary to find lower
bounds for ¢, and ¢F. Rosser [12] has given a lower bound for
¢,(10%) in the form of a polynomial f,(x) of the nth degree.

By an improved method [14] which makes use of Bernoulli poly-
nomials we have constructed polynomials P,(x) and Q,(x) of degree
n giving lower and upper bounds for ¢,(10%), and also a polynomial
P} _i(x) of degree n—1 giving a lower bound for ¢,%(10%). As we shall
actually need not Pf_; but the sum P,+P%_;, we tabulate the fol-
lowing polynomials for n=13:

*
Pis(x) Pys(x) 4+ Pia(x) Qus(x)

.0°1380608198 x12 .0°1380608198 «x13 .091380608198 «x13
.071272704088 x12 .071326732670 x'z .071326732670 «x12
085247670000 xt .085691949617 x4t .085729012056 x1t
.0t1277269076 10 041439087748 «x10 .041469359894 x10
.032039391192 «° .032383232393 «° 082493297644 «x°
.022244543403 «x® .022716892889 B .022952478417 «x8
.01740607057 7 .02179700460 x7 .02510548659 7
.09545572654 8 .1235281024  «f .1557243217 &8
.3654889719  xb .4882665632  «x° 7120647453 5
.9452666752  «* 1.302427247 xt 2.432810990 x4

1.542870198 x8 2.191273599 X3 6.376807029 x3

1.361483164 X 1.996360212 X2 13.24421612 x2
.3459458265 «x .5410860433 «x 21.15029718 x

—.2049399029 —.2911608671 19.69764203
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If we now replace (5) by
Pu(log p*/2) = (p — 1)/2,

we find, by actual substitution into Pi3, that this inequality holds
only for $=93,785,629, and hence (1) has no solution® for p<93,-
785,629.

Since

Qus(log p%/2) = (p — 1)/2

holds only for  >141,000,000, it follows that the inequality (5), even
if we knew the exact value of ¢,(x), could not be used beyond this
limit for n=13.

The inequality (6) becomes

Py(log $2/3) + Pia(log p/3) < (p — 1)/2.

This holds only for »>102,108,200.

Hence the first case of Fermat’s last theorem is now proved for
$<102,108,200.

Further criteria of type (3), when established, may be used to ex-
tend this limit by calculating approximating polynomials of higher
degree from the ones given above by the method described in [14].

Note added March 1. Since writing the above, Dr. Rosser has kindly
sent us the manuscript of his forthcoming paper [15] in which he
completes Morishima’s proof that the prime 43 gives also a criterion
of the form (3). We have therefore calculated Py (x) and P¥(x)
from the P;; and P}, given above. These polynomials are as follows:

* *
Pra(x) Pyy(x) Py4(x) +Pis(x)
.0116037145739 x1 .016037145739 x4
.0%6683705079 x13 .0192544306733 x13 .0%6938135752 «13
.073337944336 x2 .082536688143 «x'2 .073591613150 «x'2
080940243443 1t .081131551216 «x1t .051107179466 x1
.01965570473 x° 052980593461 x10 .042263629819 «1°
.0%2719317505 «x?° .045152041706 «x° .033234521676 «*
022700968174 «x8 .0%6140455952 x* .023315013769 «x8
.01944029859 «x7 .025157919367 «7 .02459821796 7
.1009940169  «x8 .03064345185 «f .1316374687 8
.3720257684 x5 .1271048263 x5 .4991305947  x°
.9365601794  «x* .3559975936  «* 1.292557773 xt
1.500217863 x3 .6290315435  «3 2.129249406 x3
1.299882088 x? .6014604442  x? 1.901342532 x2
.3050249350 «x .1730336327 «x .4780585677 «x
—.2081092173 —.08700841024 —.2951176274

1 The corresponding result obtained by Rosser is about 41,000,000.



142 D. H. AND EMMA LEHMER

We find that (5) is satisfied only if  >230 millions, while (6) gives
the better inequality p=253,747,889.

The first case of Fermat's last theorem is therefore now established
for all p<253,747,889.
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