MAXIMUM OF CERTAIN FUNDAMENTAL LAGRANGE
INTERPOLATION POLYNOMIALS!

M. S. WEBSTER

This note extends some of the results obtained in a previous paper?
which we shall designate as I. The notations are the same.
We are concerned with the polynomials

lk(”)(x)E_ﬁ‘b_"(ﬂ__, =1,2,-,mn,
bn () (% — %)
where ¢n(x) =(x—2x1)(x—x2) + - + (x—x,) is the Jacobi polynomial of

degree # which satisfies the differential equation (1—x2)¢,.’ (x)
+ [a—B—(a+B)x]dp. (x) +n(n+a+B—1)p.(x) =0. The parameters
o, 3 are positive and » is a positive integer. It is known that
—1<x,<%p1< -+ + <x1<1. Throughout the paper, x is always re-
stricted to the interval —1=Sx=1.

It was shown in I, for example, that, if a=8=%, max |l£")(x)| <2
and M (1)—2 as n— .

Now we use®
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and the asymptotic expressions?
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Tn+a+p8—1) 2
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where N=n+(a+B8—1)/2,cn ' S0=m—¢,c, € positive constants and
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where J.(x) is Bessel's function of order m. Since ¢, (x; «, B8)
=npn,(x; a+1, B+1), these yield immediately the following results:

LEMMA. For x such that —1+e<x,S1—e and |x—x:] =€ >0,
max |l£”)(x)[——>0 as n— o even if x—+1 (a, B<3;¢ ¢ >0).

THEOREM 1. For x;, such that —1+eZx.<1—eand | x——xk| =€ >0,
max I l,(c”)(x)] =0(n") as n— « where max (a, B) =v>%; ¢, >0. The ex-
ponent vy cannot be decreased.

The method used in the proof of Theorem 5 in I really gives the
following slightly stronger result:

THEOREM 2. If —14esxS1—¢, —14+€<Sx=1—¢, max Ilﬁ")(x)l
—1 as n— o (¢, € >0).

Combining Theorem 2 and the lemma, we obtain the following:

THEOREM 3. For x;, such that —14+e=<x,<1—¢, max ]l,ﬂ”)(x) I —1 as
n—o (o, <3, €>0).

This result is a considerable improvement over Theorem 5 in I.
Moreover, if the hypothesis —1+e=<x;,<1—¢ is removed, the theo-
rem is not true as Erdés and Griinwald® showed in case a=8=%. In
view of Theorems 1, 4, 5, 6, the restriction «, 8<% is also necessary.
In particular, this theorem holds for the case of Tschebycheff
(a=B=1%) and Legendre (a=08=1) polynomials.

THEOREM 4. If a=B=4% and x,—t as n— =, then max | (x)| —1
+|t] as n— o (—1=t=1). This is also an upper bound if |xk| <|t|
at least for large values of n.

Proor. It was shown in I that I (1) =14x; and for x4 Sx <%k,
max ll,(;")(x)| <1.87. Since (I) max [l(,(c”)x)l is attained either between
%341 and x_; or at x= 11, the theorem is valid for =1 and, by sym-
metry, for t= —1.

If |t| <1, the preceding paragraph and Theorem 2 complete the
proof. In fact, max |I{” (x)| =1+ x| at least for large n.

The next two theorems are obtained in a similar manner.

THEOREM 5. If a=1%, =% and x,—t as n— o, then max ]l,(c”)(x)l
—4/mift=—1,1if —1<¢t=<—3, Q(A+))V2¢f —Fst=1.

THEOREM 6. If a=4, =% and x,—t as n— =, then max | (x)|
—[2(1=)]v2if —15t<3, 14f3st<1,4/mif t=1.

8 Erdos and Griinwald, Note on an elementary problem of interpolation, this Bulle-
tin, vol. 44 (1938), pp. 515-518.
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The max ll‘l”)(x)l is attained at x=41 since! (I) 6r1—0k
=2r/(2n4+a+B—1) provided :<a, 3<$ and x;,=cos 6;. Using the
second asymptotic formula and the fact* that #8,—j, as n—  where
Ju is the kth positive zero of Js_1(x), we find that

I l](cn)(l) | N (‘%jk)a_2l P(B)Jﬂ(jk) |‘1 asn— o, k constant,

I (—1)—0 which proves the theorem:

THEOREM 7. Max ll@(x)l —>(%j1)ﬂ'2| T(B)Js(j1)|~* as n—> o (where
t<a, B=4%, j11s first positive zero of Js_1(x)).

A similar result holds for I (x) if 8 is replaced by a.

For Legendre polynomials (¢ =f=1) this limit is approximately
1.602. For a=8=1% and a=(=4% the limit of Theorem 7 is also an up-
per bound for max |l§”)(x)| and max |{” (x)|. Whether this is true, in
general, remains unanswered.
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AN INVARIANCE THEOREM FOR SUBSETS OF S»!
SAMUEL EILENBERG
The purpose of this paper is to establish the following.

INVARIANCE THEOREM. Let 4 and B be two homeomorphic subsets of
the n-sphere S*. If the number of components of S*— A 1s finite, then it
1s equal to the number of components of S*— B.

In the case when 4 and B are closed this theorem is a very well
known consequence of Alexander’s duality theorem and its generaliza-
tions. In our case we also derive our result as a consequence of a
duality theorem. However, the duality is established only for the di-
mension #—1.

Given a metric space X we shall say that I'* is a k-cycle in X if
there is a compact subset 4 of X such that I'* is a k-dimensional con-
vergent (Vietoris) cycle in A with coefficients modulo 2. We shall
write I'"*~0 if I'*~0 holds in some compact subset of X. The homol-
ogy group of X obtained this way will be denoted by 3¢*(X); the cor-
responding connectivity number, by p*(X). The number p*(X) can
be either finite or «.
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