
ON TRANSLATIONS OF FUNCTIONS AND SETS1 

RALPH PALMER AGNEW 

1. Introduction. It is the object of this note to prove the following 
theorem and two lemmas (see §3) on translations of sets which are 
used in the proof of the theorem. 

THEOREM 1. In order that a sequence xn(t) of complex-valued func­
tions measurable over — oo < t < oo may be such that, for each real se­
quence Xn, 

(1) lim xn(t — Xn) = 0 
n—»oo 

for almost all t, it is necessary and sufficient that for each ô > 0 

00 

(2) £ l.u.b. \Et{h ^ t^ h+ 1; \xn(t)\ S « } | < » . 
n = l — <*><h<<*> 

Necessity for Theorem 1 is established by proving the following 
more incisive theorem. 

THEOREM 2. If a sequence xn{i) of complex-valued f unctions measur­
able over — oo <t< oo is such that, for each real sequence Xn, 

lim xn{t — Xn) = 0 
n—>oo 

for each t in some set D of positive measure {where the set D may depend 
upon the sequence Xn), then (2) holds. 

Measure is that of Lebesgue, and a property such as (1) holds for 
almost all t if it holds for all t in the infinite interval — oo < / < oo with 
the possible exception of a null set (set of measure 0). The set 

A =A{h,t,n,Ô) = Et{h g ^ H l ; | *»(0| ^ d\ 

is the set of all points / such that h^t^h + 1 and |x n( / ) | ^ 5 ; and \A \ 
denotes the measure of A. The condition (2) implies that when n is 
large the function | xn{t) | is less than 5 for "most" values of t in each 
unit interval; but (2) implies no restriction whatever on xn{t) when t 
lies in the "exceptional" set. 

The hypothesis that (1) holds for almost all / for each real 
bounded sequence Xn does not imply (2). For example if, for each 
n = l, 2, 3, • • • , xn{t) is a constant cn over the interval 2n<t<2n-\-l 
and is 0 otherwise, and Xn is a bounded sequence, then (1) holds for 
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each /; but (2) fails in case cn fails to converge to 0 as n becomes 
infinite. 

2. Proof of sufficiency for Theorem 1. Let xn{i) be a sequence of 
measurable functions for which (2) holds, and let \n be a sequence of 
real numbers. I t follows from (2) that, for each ô > 0 , 

00 

(3) 2 l.u.b. \Et{kg t^ h+1; \xn(t-\n)\ ^ S} | < » . 
w = l — <*><h<<*> 

Let / denote an arbitrary finite interval. Since / can be covered by a 
finite set of unit intervals h^t^h + 1/it follows from (3) that for each 

(4) £ I £*{ '*ƒ; I * » ( * - A n ) | ^ «} I < » . 
n - l 

Setting 

(5) An,p = Et{tzJ\ | xn(t- X»)| ^ # - 1 } , », # = 1, 2, 3, • • - , 

we see that (4) implies existence of indices ni<ti2<ns< • • • such 
that 

00 

(6) £ \A».,\ <2-v-\ p= 1,2, • • • . 
71=71 p 

Setting 

oo oo 

\') Ar = _̂̂  2LJ Antp, Y = 1, Z, * • • , 
p = r n=7i p 

we find 

(s) l a i s s é ÊM».p| < £ 2 - ^ = 2-% r = i ,2, . .- . 
2>=r n=Wp j7=r 

Let 

(9) ƒ , = J - Ar, r = 1, 2, • • . . 

If / £ Jr then, when p > r , 

(10) I *» (* -X„) | < r S » ^ »P, 

so that xn(/~Xn) converges to 0 over Jr. Hence xn(t— Xn) converges 
to 0 over J1+J2 + • • • . But Jr is a subset of / having measure 
greater than \j\ —2~r; hence J1+J2 + • • * is a subset of J having 
measure \j\. Therefore xn(t—Xn) converges to 0 for almost all t in J. 
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Since / is an arbitrary finite interval, xn(t— Xw) must converge to 0 for 
almost all / in — <x> < / < 00 and sufficiency for Theorem 1 is proved. 

3. Lemmas on translations of sets. In this section we prove two 
lemmas. The first states that if C and B are measurable subsets of 
unit intervals, then it is possible to translate B in such a way that 
the intersection of C and the translation of B will have measure at 
least IJ C\ \B\. The first lemma is used in proof of the second which 
specifies conditions under which a given sequence of sets can be trans­
lated so as to cover each point of the interval — 00 <t< 00, with the 
exception of a null set, an infinite number of times. The close connec­
tion established in §4 between Lemma 2 and Theorem 2 shows that 
the combined proofs of Lemmas 1 and 2 furnish essentially a proof of 
Theorem 2. 

If £ is a set of points / in the interval — 00 < / < <x> and X is a real 
number, let EÇK) denote the set of points t such that t —X t E; thus 
E(X) is the set obtained by translating the set E to the right X units. 
Let U denote the unit interval 0 ^ / ^ 1. 

LEMMA 1. If C and B are measurable subsets of £7, then 

(11) max |CJ3(X)| à i | c | | B\. 

Let 4>{t) be the characteristic function of C, that is, <j>{t) = 1 when 
t e Cand $(/) = 0 otherwise; and le t^( / ) be the characteristic function 
of B. Then ^/{t—\) is the characteristic function of J3(X), and 
<t>(t)\{/(t—\) is the characteristic function of the intersection CBÇK) 
of C and i?(X). Hence on denoting the measure of CB(K) by /x(X) we 
have 

(12) M(x) = f <KMt - x ) * . 

The function fx(X) is continuous since 

I M(X + A) - M(X) I ^ f 0(0 I iK* - X - A) - iK* - X) I dt 
J - 0 0 

ƒ
00 

I iK* - X - A) - f(f - X) I dt 
- 0 0 

ƒ 0 0 

I W - h) - iKfl I dt 
- Û O 

and the last integral converges to 0 with h. Hence /x(X) has a maxi-
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mum over the interval — l ^ X g l . Since JLC(X)=0 when |X| > l , the 
computation 

/

l •» 00 /» 00 

ix(\)d\ = I d\ I 0(O^(^ - X)d/ 

ƒ 00 /» 00 

«(/)<// I ^(/ - X)d\ = \C\\B\ 
^ - 0 0 • / —CO 

is easily justified. This equality and the inequality 
(13) M(X) g max /*(X), - 1 ^ X ^ 1, 

imply that max | CB(K)\ =max ju(X) *z%\ C| \B\ and Lemma 1 is es­
tablished. 

The fact that use of inequalities such as (13) often leads to crude 
results may make one suspicious that Lemma 1 holds when the fac­
tor \ in (11) is replaced by a greater factor. To settle this ques­
tion, let 0 < e < i let C = Et{e£t£l-e}, and let B=Et{0^t^e} 
+ J E « { l - € ^ / ^ l j . Then | C| = 1 —2«, | s | = 2 e , and it is easy to 
verify that 

(14) max | CB(X)| = e = [l/(2 - 40] | C\ | B \ > 0. 

This shows that \ is the greatest factor permissible in (11). 

LEMMA 2. If Au A2, • • • is a sequence of measurable sets and a se­
quence Uit Ü29 - - - of unit intervals exists such that 

(15) E l UnAn\ = oo, 
w = l 

then there exists a sequence Xi, X2, • • • such that each t in the interval 
— 00 <t< 00 , except those in some null set, lies in an infinite number of 
the sets An(kn). 

Let Bn=UnAn so that each Bn lies in some unit interval and 
]T)|Bn\ = 00. Let n be fixed. Choose \n such that BnÇKn) <= U, where 
Uis as before the unit interval 0 ^ / ^ 1, and let Cn = U—Bn(X„). Since 
Xn+i exists such that J5w+i(Xn-t-i) c U, Lemma 1 guarantees existence 
of Xw+i such that 

(16) I CnBn+1(\n+1) I ^ 
2 I Cn I I Bn+i J . 

Let Cn+i = U— [Bn(Kn) + Z7J?n+i(Xn+i) ]. Again from Lemma 1, Xn+2 ex­
ists such that (16) holds when n is replaced by n + 1. In this manner, 
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we obtain a sequence Xw, Xn+i, • • • of real numbers and a sequence 

(17) Cn+P = U - [UBn(\n) + UBn+1(\n+1) + • • • + UBn+p(\n+p)] 

of sets such that, for each p = 0, 1, 2, • • • , 

n+p 1 n+p 

(18) E I C*S*fi(Xw.i) I è — É I C» I I B w |. 

Since the sets CkBk+1(Kk+1) (k=n, n + 1, • • • , w+^>) are subsets of U 
and no two have a point in common, the left member of (18) is less 
than or equal to unity for each p = 0, 1, 2, • • • . From this it follows 
that | Cn+p\ —>0 as p—•» oo ; for | Cn + P | is monotone decreasing as £—» oo 
and if | Cn+P\ is bounded from 0, then the fact t h a t ^ | Bn\ = oo would 
imply that the right member of (18) diverges to + oo as £—>oo. The 
conclusion that | Cn+P\ —»0 as £—>oo implies by (17) that 

(19) lim | UBn(K) + UBn+1(\n+1) + • • • + UBn+p(\n+p) | = 1.. 

Hence there exists a sequence 0 = ni<ri2< • • • of indices such that 
the set 

(20) Dk s £/£nft+1(Xn,+i) + • • • + l75njb+l(Xnjb+l) 

has measure | A , | >1—2-*-1foreachA = l ,2 , • • • .PutPk=DkDk+i • • • 
and P = P i + P 2 + • • • . The fact that Dk c Z7 and | Dk\ > 1 - 2 - * - 1 for 
each & = 1, 2, • • • implies that Pkc U and | Pk\ _ 1 — 2~fc, and conse­
quently P c [/and | P | = 1. If t e P , then ttPk for some & so that t e £>& 
for all sufficiently great k and t e ^n(Xw) for an infinite set of n, and 
hence also 11 AnÇKn) for an infinite set of n. 

If the sequence of sets An is arranged in a double sequence Ap,q 

(P = 0, ± 1 , • • • ; g = l , 2, • • • ) in such a way that 
oo 

(21) E U P . « | = «>, # = 0, ± 1, ±2 , . . . , 

it results from what we have already proved that for each fixed p 
there is a sequence XPfi, Xp,2, • • • such that each point of a subset 
of IP = Et{p^t^p + l} of measure unity is contained in an infinite 
number of the sets Ap,i(Kp,i), Ap,2(\p,2), • • . Then each point of 
— oo <t< oo with the exception of a null set lies in an infinite num­
ber of sets of the double sequence Ap,q(\p,q) which can be arranged in 
the simple sequence An(Kn), and proof of Lemma 2 is complete. 

The hypothesis of Lemma 2 is equivalent to the following: An is a 
sequence of measurable sets such that 
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00 

(22) X) l.u.b. | Et\h g t ^ h+ l;tzAn} | = « . 
n = l — «><7ï<oo 

That the hypothesis (22) cannot be relaxed is a consequence of the 
following result which we give without proof. If Ai, A2, • • • is a se­
quence of measurable sets, and a real sequence Xi, X2, • • • and a set C 
of positive measure exist such that each point of C lies in an infinite 
number of the sets ^4w(Xn), then (22) holds. 

That the conclusion of Lemma 2 must provide for an exceptional 
null set becomes clear when one observes that if the sets A n are each 
nondense then, however Xi, X2, • • • are determined, the set ^An(\n) 
must be of the first category and hence there must be a set of the 
second category whose points are in none of the sets ^4n(Xn). 

4. Proof of Theorem 2. To prove Theorem 2, let xn(t) be a sequence 
of measurable functions for which (2) fails for some ô > 0 . Then S > 0 
and a sequence fti, h2l • • • exist such that 

00 

(23) E Et{ K g t£ K + 1; I *„(*) I £ 8} = « . 

Let An=Et{\xn(t)\ ^ ô } . Then by Lemma 2 there exist a sequence 
Xi, X2, • • • and a set C whose complement is a null set such that each t 
in C lies in an infinite number of the sets ^4n(Xn). Hence if t e C, then 
/— Xn e An for an infinite set of n so that | xn(t—\n) \ ^ ô for an infinite 
set of n. This contradicts the hypothesis of Theorem 2 and completes 
the proof. 
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