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VARIATIONS FOR MULTIPLE INTEGRALS1 

WILLIAM A. PATTERSON 

1. Introduction. The simplest case of the inverse problem of Dar-
boux is that in which an ordinary differential equation in the normal 
form yn' =<£(#> y, y') is assigned with the requirement that we ascer­
tain, first, under what conditions 4>{x, y, yf) is the solution for y" of 
the Euler equation of a variation problem of the form Jl\f{x, y, y')dx 
= min and then that we determine the most general integrand func­
tion ƒ corresponding to an admissible function2 <£(#, y, y'). 

For partial differential equations the simplest analogous problem 
is that of finding the most general first order multiple integral varia­
tion problem associated with an assigned partial differential equa­
tion, that is, the most general integrand function ƒ of a variation 
problem of the form 

(I) J f(xh • • • , xn, z, pi, * * * > Pn)dxi • • • dxn = min, pi = dz/dxi, 
J (n) 

of which the extremal hypersurfaces are the integral hypersurfaces 
z = z(xi, - - - , xn) of a prescribed partial differential equation. 

A systematic study of such inverse problems of Darboux type for 
certain important classes of partial differential equations is made in 
this paper. 

2. A uniqueness theorem. Consider a partial differential equation 
of the form 

,2 jv F = Aa(i(Xi, ' ' ' , Xn, Z, p h ' ' ' , pn)pafi 

+ B(Xl, ' ' ' , Xn, Z, pi, ' ' ' , pn) = 0 , 

where pa = d2z/dxidxj, and Aij = Aji (i,j = l, • • • , n) and B are arbi­
trary analytic functions of xu • • • , xn, z, pi, - • - , pn. In (2.1) as else­
where in this paper, a repeated Greek letter is an umbral index 
indicating a summation with range 1 to n, unless otherwise indicated. 

Equation (2.1), as it stands, may have an equation of variation 
which is self-adjoint on every hypersurface z = z(xi, • • - , # » ) . If so 
there is always a multiple integral of the form (I) having F = 0 as its 

1 Presented to the Society, December 29, 1939. 
2 Cf. G. Darboux, Théorie des Surfaces, vol. 3, 1887, p. 53. For the case of n^2 

dependent variables yh • • • , yn see L. LaPaz, Proceedings of the National Academy 
of Sciences, vol. 17 (1931), pp. 459-463. 
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Euler-Lagrange equation. The most general such integral is known 
to have an integrand function of the form3 

(2.2) ƒ = G + C + Dapa + d««/da?«, 

where G(#i, • • • , xn, z, Pu ' ' • > Pn) is a particular solution of 

(2.3) gViPj = Aih ij = 1, • • • , » , 

where the set {C{xu • • • , xn, z), Z\(#i, • • • , xn, z)} is a particular 
solution of 

(2.4) Cz — Daxa = GPaxa + Gpazpa — Gz — B, 

and where the co* occurring in the partial derivatives with respect to Xi 
are arbitrary functions of z alone. Whether (2.1), as it 
stands, has a self-adjoint equation of variation or not, there may exist 
equivalent equations which do have self-ad joint equations of varia­
tion. We proceed to the question of the existence of such equivalent 
equations. 

For a problem of minimizing the multiple integral (I), the Lagrange 
partial differential equation must necessarily be a second order partial 
differential equation4 linear in the pa and with a self-adjoint equation 
of variation. Thus, if the integral hypersurfaces z = z(xi, • • • , xn) of 
F = 0 are to be the extremal hypersurfaces of such a problem, the 
partial differential equation -F = 0 must be equivalent to a partial dif­
ferential equation of the second order with the properties of linearity 
and self-adjointness of the equation of variation just described. Since 
the analytic partial differential equation F=0 is itself linear in the pa, 
it follows that the most general linear equation 

duriXl, ' ' ' , Xn, Z, Pi, ' * * , Pn)pixv + b{%\, ' ' ' , Xn, 2, pi, ' ' ' , pn) = 0 

equivalent to F= 0 is of the form M- F = 0, where M9e0 is a function of 
X±f , Xnt Zf jPi, , p n alone. A function M(xi, • • -,xnfz,pi, •••,ƒ>») 
F^O and such that the equation MF = 0 has a self-adjoint equation 
of variation will be called a multiplier of the partial differential equa­
tion F=0. Since multipliers which differ only by a nonzero constant 
factor are not regarded as distinct, it is permissible to restrict atten­
tion to multipliers M>0. 

If the equation M• F=0 is to have a self-adjoint equation of varia­
tion, then the multiplier M must satisfy the following relations5 iden­
tically in the variables xi, • • • , xn, z, pi, - - - , pn: 

3 Cf. L. LaPaz, Transactions of this Society, vol. 32 (1930), p. 513. 
4 Integrand functions linear in the pi are excluded from consideration. 
5 L. LaPaz, loc. cit., p. 512. 
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(2.5) MAij = M-Aji, i,j=l,2,-'-,n, 

d{M'Aiu/dpk = d(M-Akà/dpi, i,j, k = 1, 2, • • • , n; k ^ i, 

d(M-Aia)/dXa + pad(M'Aia)/dZ - d(M'B)/dpi = 0, 

i = 1, 2, • • • , n. 

I t is evident that the conditions (2.5) are automatically satisfied. 
Hence if a multiplier M(xi, • • • , xn, z, pi, • • • , pn) exists, it must 
satisfy the relations (2.6) which may be written in the form 

AijdM/dpk - AkfiM/dpi + (dAii/dpk - dAki/dpi)-M = 0, 

(2.7) AiadM/dxa + pa-AiadM/dz - B-dM/dpi 

+ (dAia/dXa + padAiet/dz - dB/dpi)-M = 0. 

If F = 0 , as it stands, has a self-adjoint equation of variation, then 
(2.7) reduces to 

Ai3dM/dpk - AkjdM/dpi = 0, 
(2.8) 

AiadM/dxa + pa-AiadM/dz - BdM/dpi = 0. 

If a, the determinant of the matrix (-4»-/), is different from zero, it 
follows from (2.8i) that dM/dpi^0 (i = l, 2, • • • , n). But then (2.82) 
is seen to imply that dM/dxi = dM/dz = 0 (i = 1, 2, • • • , n) ; that is to 
say, M is a constant. This completes the proof of the following result. 

THEOREM 2.1. If F=0y as it stands, has a self-adjoint equation of 
variation in a neighborhood in which a 3^0, then F = 0 admits a constant 
as its most general multiplier in this neighborhood. 

As an immediate corollary to Theorem 2.1 we have the following 
important uniqueness theorem. 

THEOREM 2.2. In a neighborhood in which a^O, the equation F=0 
admits at most one multiplier M. 

3. Variation problems in (w + l)-space of which the extremals are 
minimal hypersurfaces. As an interesting application of Theorem 2.2, 
let us consider the inverse problem of Darboux for minimal hyper-
surfaces6 in (w + 1) -space (n>2). The corresponding inverse problem 
for straight lines in (w + l)-space (w>2), that is, for solution curves 
of the system of differential equations y/' = 0 ( i = l , 2, • • • , n) has 
recently been treated by D. R. Davis7 who has found that the most 
general integrand function ƒ(#, y^ • • • , yni y\, • • • , yn') of a varia-

6 For the case w = 2 see L. LaPaz, Acta Szeged, vol. 5 (1932), pp. 199-207. 
7 D. R. Davis, Transactions of this Society, vol. 33 (1931), pp. 244-251. 
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tion problem of the form f%lfdx = min for which the extremals are the 
solution curves of the system of differential equations y f = 0 
(* = 1, 2, • • • , n) is of the form f—g(x, yh • • • , y„, yi, • • • , yn') 
+dt(x> yu - • • , yn)/dx, where g is a suitably chosen particular solu­
tion of a (compatible) system of second order partial differential 
equations, with i < j = 1, 2, • • • , n, of the form 

d2g/dy{dyj = Pii(y{, - - ,yt,yi- yîx,- • ,Vn- yix), 

and where / is an arbitrary function of its arguments. The functions 
Pij are arbitrary solutions of a certain system of partial differential 
equations considered by Davis. In sharp contrast to this result we 
shall show that the most general variation problem (I) for which the 
extremals are minimal hypersurfaces in the sense defined below is 
uniquely determined up to an additive function of the form do)a/dxa 

where the a?» (i = 1, 2, • • • , n) are arbitrary functions of xu • • • , xnt *• 
A surface z = z(xi, • • • , xn) defined and of class C" in a region R 

of (#i, • • • , xn) -space will be called a minimal hypersurface if z and 
its partial derivatives of the first and second orders satisfy in R the 
partial differential equation 

(3.1) F1 S [(1 + Pypy)ôi - Papfi]-pafi = 0, 

where b) is Kronécker's delta. -Fi = 0 is of the form (2.1) with 
a^{\.-\-pypy)n~l7^0 and therefore by Theorem 2.2 there exists at 
most one multiplier I f for Fi = 0. But the Lagrange partial differential 
equation for the problem f(n)(l+pypy)

1,2dxi • • • d#n = min is of the 
form M - Fi = 0 where M=(l+pypy)~

sl2. Hence, calculating the inte­
grand function ƒ of (2.2), we reach the following conclusion. 

THEOREM 3.1. The partial differential equation Fi = 0 of minimal 
hypersurfaces admits the unique multiplier M= (1 +pypy)~zn. The most 
general variation problem (I) for which the extremal hypersurfaces 
are minimal hypersurfaces has an integrand function ƒ of the form 
f=(l+pypy)l,2+dœa/dxa, where the coi are arbitrary functions of 
Xu ' ' ' i %n, z alone. 

4. Variation problems associated with the equation Aappa{i 
+B(xi, • • • , xn, 2 )=0 . In this section we shall consider the prob­
lem of finding the most general variation problem (I) associated with 
the partial differential equation 

(4.1) F2 S Aafipafi + B(Xi, • • • , Xn, z) = 0, 

where Aij = Aa (if j = 1, 2, • • • , n) are real constants not all zero and 
B is an arbitrary analytic function of xi, • • • , xn> z. 
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Partial differential equations of the form (4.1) are of much im­
portance in pure and applied mathematics. For example if we choose 
» = 2, Aii^h) and B^Sz/il+xl+x^)2, (4.1) reduces to the partial 
differential equation studied by Schwarz in his researches on minimal 
surfaces. For the same value of n and suitable choice of An and B, 
the equation (4.1), with appropriate interpretation of the variables 
Xi, X2 and z, includes many of the most important partial differential 
equations of mathematical physics. 

I t is easy to verify that all equations (4.1) have self-adjoint equa­
tions of variation and hence, as they stand, are Euler-Lagrange 
equations. We therefore proceed immediately to the problem of de­
termining the most general integrand function ƒ of the problem (I) 
known to be associated with an equation of the form JF2 = 0. Applica­
tion of Theorem 2.1 and calculation of the function ƒ of (2.2) leads 
to the following theorem. 

THEOREM 4.1. /ƒ a^O, then the partial differential equation F2 = 0 
admits a constant as its most general multiplier. The most general varia-
Hon problem (I) associated with 7̂2 = 0 has an integrand f unction f of 
the form f=iAapp<xpp—fl0Bdz+dù)a/dxa, where the co* are arbitrary 
functions of Xi, • • • , xn, z-

As an application of this case we find that the most general varia­
tion problem (I) associated with s = d2z/dxidx2 = 0, which is of the 
type F2 = 0 with n = 2 and B = 0, has an integrand function of the 
form ƒ=pip2/2 +ôcoi/ô#i+ôco2/dx2 where coi, co2 are arbitrary functions 
of xi, #2, s. 

If ct = 0 our discussion proceeds on the basis of the system (2.8) 
written for the equation 7̂2 = 0. I t is evident that in every case the 
resulting system of equations S can be replaced by an equivalent 
system 5* of R^2n + 1 independent partial differential equations.8 

The number R of equations in 5* is equal to the rank of (-4), the 
matrix of coefficients of the system 5. Inspection of (̂ 4) discloses that 
its last column is a linear combination of the n preceding columns. 
Thus R is always less than 2n + l. Actually, when ct = 0, R is at most 
2n — l and its precise value is given by the following lemmas which 
we state without proof.9 

8 Cf. E. Goursat, Leçons sur VIntegration des Équations aux Dérivées Partielles 
du Premier Ordre, 1921, p. 66. 

9 These proofs and other details omitted in this paper are to be found in the writ­
er's doctoral dissertation, Inverse Problems of the Calculus of Variations for Multiple 
Integrals, The Ohio State University, 1936. For assistance in the preparation of this 
dissertation and the present paper, the writer wishes to express his indebtedness to 
Professor Lincoln LaPaz of The Ohio State University, 
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LEMMA 1. If (Ai2) is of rank r (r = 2, 3, • • • , n — 1), the matrix (A) 
is of rank n+r. 

LEMMA 2. If (An) is of rank 1, the matrix (A) is of rank n. 

Where it is desirable to retain the original variables xi, a straight­
forward but somewhat involved discussion based on Lemmas 1 and 2 
enables us to treat10 both the case 1 < r < n and the case r = 1. We give 
a simpler treatment of the cases 1 ^r<n using another lemma. 

LEMMA 3. If (An) is of rank r, then by means of a nonsingular linear 
transformation Xi = ciaxa (i = l, 2, - - - , n), where the en are constants, 
the partial differential equation F2 = 0 can be transformed into one such 
that11 Aij=ôij,Au=±l (i^r), Au = 0 (i>r). 

By use of Lemma 3, (2.8) can be replaced by the equivalent syste m 

(4.2) AudM/dpk- AkidM/dpi = 0, i = 1, 2, • • • , r; k = 1, 2, • • • , n, 

(4.3) Au(dM/dXi + pidM/dz) - BdM/dpi = 0, i = 1, 2, • • • , n. 

From (4.2) with i=\ and k>\ we infer dM/dpk = 0 (k>l). If now 
Kr<n, the choice i = 2, k = l shows dM/dpi = 0. Hence for Kr<n 
it follows from dM/dpi = 0 (* = 1, 2, • • • , n) and (4.3) that 
dM/dxi+pidM/dz = 0 (iSr) and therefore that dM/dxi = dM/dz = 0 
(i^r). This completes the proof of the following theorem. 

THEOREM 4.2. If the rank of (Aa) is r (Kr<n), then the partial 
differential equation 7*2 = 0, when reduced to the normal form of Lemma 3, 
admits as its most general multiplier the function A(xr+u xr+2, • • • , %n) 
where A is different from zero but is otherwise an arbitrary function of 
its arguments. 

We now proceed to calculate the function ƒ of (2.2). A particular 
solution of (2.3) formed for the equation A(xr+u xr+2, • • • , xn) -^2 = 0 
is G = %A(x7+i, xr+2, • • • , XrùApppppu. Substituting this value of G in 
(2.4), we have 

A particular solution of this equation is Di = 0 (i = l, 2, • • • , n), 
C— —A(xr+i, Xr+i, - - - , xn) - f%QBdz. We thus get the following result. 

THEOREM 4.3. If the rank of A i3- is r (Kr<n), then the most general 
variation problem (I) associated with the equation ^2 = 0, when reduced 
to the normal form of Lemma 3, has an integrand f unction f of the form 

10 See the dissertation cited in footnote 9. 
11 Cf. L. E. Dickson, Modern Algebraic Theories, 1926, pp. 71-72. 
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ƒ = A(xr+i, xr+2, ' • ' , xn) \ ** — I Bdz + dooa/dxa 

where the o)i are arbitrary f unctions of xi, #2, • • • , xny z. 

Finally if the rank of (Ai3) is r = l, then dM/dpk = 0 for all k>l 
and (4.3) reduces to the single equation An(dM/dxi+pidM/dz) 
= BdM/dpi, which obviously has two independent solutions 
Mi(xi, z, pi) and M^ixi, 2, pi) for M. In this case we are thus led to a 
somewhat different result. 

THEOREM 4.4. If the rank of (An) is 1, then the partial differential 
equation 7*2 = 0, when reduced to the normal form of Lemma 3, admits as 
its most general multiplier the functions A (Mi, M2, #2, #3, * * - , xn) 
where A is different from zero but is otherwise an arbitrary function. 

The determination of the most general integrand function ƒ when 
r = 1 may be left to the reader. 

As an application of this case we find that the most general multi­
plier for r = d2z/dx{ = 0y which is of type F2 = 0 with n = 2 and J5 = 0, 
is A (pu z — piXiy X2). The most general variation problem (I) associ­
ated with r = 0 has an integrand function ƒ of the form 

/

Pi / • Pi 

I A(pi, z — piXi, x2)dpidpi + dui/dxi + dco2/d#2 

where coi, 0)2 are arbitrary functions of Xly %2y Z, 

5. Variation problems associated with the equation R(p, q)r 
-\-2S(p> q)s + T(p, q)t = 0. Consider the partial differential equation 

(5.1) Fz = R(p, q)r + 2S(p, q)s + T(p, q)t = 0, 

where z = z(x, y), p = dz/dx, q = dz/dyt r~d2z/dx2, s = d2z/dxdy, 
t = d2z/dy2, and the coefficients R, S> T are analytic functions of p 
and q. We shall exclude equations for which two of the coefficients 
Ry 5, T vanish identically, since such vanishing would reduce the 
equation F3 = 0 to one of the special equations r = 0, 5 = 0 treated in 
the previous section. The system (2.7) with n = 2 and suitable identi­
fication of the variables now has the form 

(5.2) 

S-dM/dp - RdM/dq + M- [dS/dp - dR/dq] = 0, 

T-dM/dp - S-dM/dq + M- [dT/dp - dS/dq] = 0, 

R- [dM/dx + pdM/dz] + S- [dM/dy + qdM/dz] = 0, 

S- [dM/dx + pdM/dz] + T- [dM/dy + qdM/dz] = 0. 
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In contradistinction to (4.1), (5.1) may (Case I) or may not (Case II) 
have a self-adjoint equation of variation. In Case I, since dS/dp 
— dR/dq = dT/dp — dS/dq = 0, (5.2) becomes the homogeneous system 

UiM = S-dM/dp - RdM/dq = 0, 

U2M = T-dM/dp - S-dM/dq = 0, 

UzM = # . [dM/dx + p-dM/dz] +S- [dM/dy + q-dM/dz] = 0, 

UiM s 5- [dM/d* + ^-dM/dz] + T- [dM/dy + g-dJf/d«] = 0. 

In either case the equations of (5.2) and (5.3) are found to be inde­
pendent if and only if 8 = RT — S29£0. Each of the Cases I, II may 
therefore be further subdivided according as (1) 5=^0, (2) 5 = 0. We 
proceed to a discussion of these cases. 

Case Ii. When (5.1) has a self-adjoint equation of variation and 
5 ^ 0 , it follows from Theorem 2.1 that F3 = 0 has a constant as its 
most general multiplier. Hence we have proved the following. 

THEOREM 5.1. If the equation JF3 = 0 has a self-adjoint equation of 
variation in a neighborhood in which 5?*0, then the most general varia­
tion problem (I) associated with Fz = 0 in this neighborhood has an inte­
grand f unction f of the form f =G+do)i/dx+do)2/dyy where G(x, y, z, p, q) 
is a particular solution of gpp = R, gpq = S, gqq=

zTi satisfying Gpx+Gqy 

+pGpz+qGqz--Gz = 0 and the co* are arbitrary functions of x, y, z. 

As an illustration we note that the most general variation problem 
(I) associated with the equation q2r+4pqs+pH = 0 has an integrand 
function of the form f=p2q2/2+dcoi/dx+do)2/dy1 where the co* are ar­
bitrary functions of x, y, z. 

Case I2. When 5 = 0 it follows that RST^O and hence, in any 
neighborhood in which jR-S-IVO, Uk+1M=(T/S)-UkM (fe = l, 3). 
The system UiM = Q (i = l, 3) is therefore equivalent to (5.3) and 
moreover is found to be complete. Hence we have the following result. 

THEOREM 5.2. If Fz = 0 has a self-adjoint equation of variation in a 
neighborhood in which RST^O and 5 = 0, then it admits as its most 
general multiplier in this neighborhood the function M(x, y, z> p, q) 
= A(Mi> M2> Mz) where Mi (i = l, 2, 3) are any three independent in­
tegrals of UiM=0 (i = l, 3) and A ^ 0 is an arbitrary function. 

The most general variation problem (I) can now be obtained in the 
usual manner. The equation <t>(p+q)- [r-\-2s+t]=0, where <t> is an 
arbitrary analytic function of its argument, illustrates this case. 

We now take up Case II in which ^3 = 0, as it stands, does not have 
a self-adjoint equation of variation. If in addition 5 ^ 0 , then we can 
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infer from Theorem 2.2 that at most one multiplier M(x, y, z, py q) 
exists. To secure more precise information in this case we must dis­
cuss the nonhomogeneous system (5.2). To integrate (5.2) we trans­
form it into a system linear and homogeneous in the first partial 
derivatives of a function m(x, y, z, p, q, M) with dm/dM^Oj which 
defines M by means of the relation m = const. The resulting system 

Um s Sdm/dp - Rdm/dq - M- [dS/dp - dR/dq]-dtn/dM = 0, 

U2m s Tdm/dp - Sdm/dq - M- [dT/dp - dS/dq]-dm/dM = 0, 

V%m s R{dm/dx + pdm/dz) + S(dm/dy + qdtn/dz) = 0, 

UAm = S{dm/dx + pdm/dz) + T(dm/dy + qdtn/dz) = 0 

is independent since 05*0. I t is easy to verify that the commutator 
(U\U±)rn= V$m is not a linear combination of Vim (i = 1, 2, 3, 4) and 
we accordingly adjoin V&m = 0 to the system (5.4). I t is next found 
that the commutator (JJiU^m is a linear combination of Uitn 
(i = 1, 2, 3, 4, 5) if and only if the following determinant D vanishes: 

I S T S'[dT/dp+dS/dq]-R'dT/dq-T-dS/dp\ 

R S S-[dS/dp+dR/dq]-R-dS/dq-T-dR/dp\ 

\dS/dp-dR/dq dT/dp-dS/dq V I 

where 

V = S- [d2T/dp2 - d2R/dq2} - R- [d2T/dpdq - d2S/dq2] 

- T- [d2S/dp2 - d2R/dqdp\. 

We are thus led to distinguish two subcases I In and IIi2 according 
a s Z > ^ 0 o r D = 0. 

Case I ln . In a neighborhood in which ö?*0 and D ^ O , (V\V^)m 
= î/ôm is not a linear combination of Vim (i = 1, 2, 3, 4, 5), and upon 
adjoining Vem = 0 to our system we have a system of six independent 
equations in the partial derivatives of m(x, y, z, p, qy M). Hence the 
most general integral of the system is a constant. Thus there exists no 
nonsingular solution of the system (5.2) and we have the following. 

THEOREM 5.3. If F3 = 0 does not have a s elf-adjoint equation of varia-
tion in a neighborhood in which 5 ^ 0 and D 7^0, it admits no multiplier 
in this neighborhood. 

The equation p2r+2q2s = 0 is an illustration of this case. 
Case II12. In a neighborhood in which S^O and D = 0 the system 

Vim = 0 (i = l, 2, 3, 4, 5) is complete and has m —A(mi) for its most 
general integral where m\{p, q} M) is a particular solution of [7tw = 0 
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(i = l, 2) and A is an arbitrary function of its argument. The most 
general nonsingular solution M of the system (5.2) is obtained by 
solving for M the relation A (mi) = const. The equation M • Fz = 0 now 
has a self-adjoint equation of variation and M2- S3^0. Hence, since 
multipliers which differ by a nonzero constant factor are not regarded 
as distinct, we have from Theorem 2.1 the following. 

THEOREM 5.4. If Fz = 0 does not have a self-adjoint equation of varia­
tion in a neighborhood in which 8 ^ 0 and J9 = 0, then it admits as its 
most general multiplier in this neighborhood the unique solution for M 
of the relation A (mi) = const. 

The most general variation problem (I) can now be obtained in the 
usual manner. As an illustration of this case we cite the partial differ­
ential equation of minimal surfaces12 (l+q2)r — 2pqs + (l+p2)t = 0. 

Case II2. If 8 = 0 it follows that R- S- T^O, and hence in any neigh­
borhood in which R-S-T^O we find that t/4w = ( r / 5 ) - Uzm. How­
ever, U2m = (T/S)-Uim if and only if A=d(R/S)2/dq-2d(R/S)/dp 
vanishes. We therefore consider the two subcases II21 and II22 ac­
cording as A = 0 or À ^ 0. 

Case II21. In a neighborhood in which RS- 7 V 0 and A = 0, the sys­
tem Uim = 0 (i = l, 3) is equivalent to (5.4) and furthermore is com­
plete. Hence we have the following result in this case. 

THEOREM 5.5. If Fz = 0 does not have a self-adjoint equation of varia­
tion in a neighborhood in which RST^O, 8 = 0 and A = 0, then in this 
neighborhood Fz = 0 admits as its most general multiplier the solution for 
M of the relation A (mi, m2y mSl m±) =const. , where mi ( i = l , 2, 3, 4) 
are any f our particular independent solutions of Uim = 0 (i = l, 3) and 
where A is different from zero but is otherwise an arbitrary function. 

The equation q2r — 2pqs+p2t = Q is an illustration of this case. 
Case II22. In a neighborhood in which R-S-T^O and A ^ O w e find 

it more perspicuous to consider the system (5.2). If in (5.2) we multi­
ply the first equation by S(p, q), the second by R(p, q) and subtract, 
we obtain M- [S'dS/dp-SdR/dq+R-dS/dq-RdT/dp] = 0. Since 
A 7^0 we must have M = 0, and hence the following is valid. 

THEOREM 5.6. If Fz = 0 does not have a self-adjoint equation of varia­
tion in a neighborhood in which R-S-T^O, 8 = 0 and AT^O, then it 
admits no multiplier in this neighborhood. 

The equation p2r+2pqs+q2t = 0 illustrates this case. 

F E N N COLLEGE 

12 Cf. L. LaPaz, Acta Szeged, vol. 5 (1932), pp. 199-207. 


