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The purpose of this note is to generalize a recent theorem due to 
Ostrowski2 which is itself a generalization of a theorem proved by 
Phillips in 1919.3 We shall first indicate the nature of Ostrowski's re
sult. 

Let Ai = Iy A2l - • • , Am be square matrices of order n, I being the 
unit matrix, and let xi, • • • , xm be numerical parameters. Denote by 
F(xiy • • • , xm) the determinant of the matrix 

(1) ociAi + x2A2 + • • • + xmAm. 

Let $(#i, • • • , xm) be the greatest common divisor of the n2 minors 
of order n — 1 of the matrix (1), and set F/$ = F*(xiy * * * , xm). We 
may now state the theorem of Ostrowski in the following form:4 

THEOREM 1. If Bi, • • , Bm are matrices of order n, commutative 
with each other and satisfying the equation 

(2) A1B1 + A2B2 + • • • + AmBm = 0, 

then 

F*(Bi,- • • ,Bm) = 0. 

Further, if ^f(xu • • • , xm) is any polynomial with the property that 
^(Biy - - - y Bm) =0 for every set of commutative matrices satisfying (2), 
then ^(xiy - - - y xm) is divisible by F*(xiy • • • , xm). 

In this theorem it is tacitly assumed that the elements of the mat
rices as well as the coefficients of the polynomials are real or complex 
numbers. In Theorem 3 below we find an extension of the first part 
of Theorem 1, valid if the elements and coefficients are in an arbitrary 
commutative ring R with unit element 1. To generalize the second 
part of the theorem, we find it necessary to make an additional re
striction on Ry namely, that there exists no nonzero polynomial </>(X) 

i 
1 Presented to the Society, September 8, 1939. 
2 A. Ostrowski, On a theorem concerning identical relations between matrices. Quar

terly Journal of Mathematics, vol. 9 (1938), pp. 241-245. 
3 H. B. Phillips, Functions of matrices, American Journal of Mathematics, vol. 41 

(1919), pp. 266-278. 
4 The assumption that Ai = I is not strictly necessary but assures us that 

F(xi, - • • , xm) does not vanish identically. For the generalization below, we wish to 
have A \ — I and so we state the theorem at once in this form. 
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with coefficients in R, such that <j>(a) = 0 for all elements a of R. The 
result obtained under this restriction is stated as Theorem 4. 

The form of our theorems is suggested by a recent generalization, 
in another direction, of Frobenius' theorem concerning the minimum 
equation of a matrix.6 Since this plays an important part in the proof 
of Theorem 4, we state it explicitly before proceeding. 

THEOREM 2. Let R be an arbitrary commutative ring with unit ele
ment 1, and A a matrix of order n with elements in R. Let X be an inde
terminate, denote by f(K) the determinant of the matrix \I—A, and let 
hijÇK) be the minors of\I—A of order n — 1. Then, an element gÇK) of 
R [X] has the property that g(A) = 0, if and only if g(k)ha(\) = 0 (/(X)), 
(i,j = l, 2, • • • , n). 

It will be seen that Theorems 3 and 4 bear roughly the same rela
tion to Ostrowski's theorem that Theorem 2 does to Frobenius'. 

Henceforth we shall let A 1 = 1, A2, • • • , Am be matrices of order n 
with elements in a commutative ring R with unit element 1, and let 
X\, , Xm 

be indeterminates. Denote by F{x\, • • • , xm) the determi
nant of the matrix 
(3) xiAi + x2A2 + - • • + ocmAm. 
Let Fij(xu • • • , xm) be the elements of the adjoint of this matrix, and 
denote by m the ideal of those elements f(xi, • • • , xm) of the ring 
R [xi, • • • , xm] such that 

/ O i , • • • , xm)Fij(xi9 - • • , xm) = 0 (F(a?i, • • • , xm)), i,j = 1, 2, • • • , n. 

We may now state the following theorem: 

THEOREM 3. If f(xi, • • • , # m ) = 0 (m), and Bh - • •, Bm are com
mutative matrices of order n, with elements in R, such that 

(4) AxBx + A2B2 + • • • + AmBm = 0, 

thenf(Bly • • • , Bm)=0. 

The proof is a simple modification of Ostrowski's, and will be only 
briefly indicated, using his notation so far as possible. Set An = (a**). 
Now, by hypothesis, we have equations of the form 

\b) J\%1) ' ' ' j XmjF ij\%l) ' ' j %m) = = fîij\Xi, * ' " > Xm)? \%1, > Xm)» 

But 
5 N. H. McCoy, Concerning matrices with elements in a commutative ring, this 

Bulletin, vol. 45 (1939), pp. 280-284. 
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2 ( 2 x*ai* Wi*(xi> ' ' ' f x™) = ^F(xh ' ' ' > *m). 

Multiply this last equation by f(xi, • • • , xm) and use (5), getting 

Jr \Xi, * ' * j Xm) 7 j I f j X^G jk I JtjiyXi, 1 Xm) 
(6) j=i \ ^ i / 

k 
= o%r \X\y ' ' ' , Xm)j\X\y ' ' ' y Xm) • 

Now, if F(#i, • • • , #m) is arranged in terms of decreasing powers of Xi, 
it is clear that the first term is x*. I t follows readily that, in the ring 
R [xi, - - • ,xm], F(xi, • • • , xm) is not a divisor of zero, and can there
fore by divided out of equation (6), yielding 

2 ( 2 X*aih ) kji(Xh ' ' ' , Xm) — Ôif(Xi, • • • , * « , ) . 

Let C # = 2 ? - A a l * ) » Then we have from the preceding equation, and 
the fact that the J5's are commutative, 

n 

2 Cjkhji(Bi, • • • , Bm) = Ôif(Bi, • • • , ^m) • 

Now this equation corresponds to Ostrowski's equation (2.3), and 
the remainder of the proof will be omitted as from this point the 
proof coincides with his. 

If R is a field, or more generally, a domain of integrity with unique 
factorization into primes, then it follows readily that m is the prin
cipal ideal (F(xi, • • • , xm)/D(xi, • • • , xm))y where D(xi, • • • , xm) is 
the greatest common divisor of the Fa(xu • * • , xm). In this case, our 
Theorem 3 can be expressed in the same form as the first part of 
Theorem 1. 

Before proceeding, we pause to make a remark which will indicate 
how, in another way, the ideal m has properties generalizing the fa
miliar properties of the minimum function of a single matrix with 
elements in a field. From the definition of nt, it follows that if 
g(xu • • • , xm)=0 (m), then 

g(#i, • • • , xm) adj 0*u41 + • • • + XmAm) = KF(xh • • - , # « ) , 

where K is a matrix with elements in R [xi, • • • , xm]. By taking de
terminants and dividing by Fn~l, we see that 

[ g O l , • • • , Xm)]n S 0 (F(Xi, • • • , Xm)). 

In particular, it follows at once that in R[xi, • • • , xm] the ideals m 
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and (F(xi, • • • , xm)) have precisely the same prime ideal divisors. 
We now turn to the problem of generalizing the second part of 

Theorem 1, and we find it necessary to make the following additional 
assumption concerning R. If f(K) is an element of R[k] such that f or 
every element a of R,f(a) = 0, then f (K) = 0. It follows readily by induc
tion on the number of indeterminates that if in R [xi, • • • , Xk], 
f(xi, • • • , Xk) has the property that f(ah •• - , a*) = 0 for all choices 
of ai, • • • , ak in R, then f(xi, • • • , xk) = 0, (& = 1, 2, • • • ). We now 
prove the following lemma: 

LEMMA. Let xi, • • * » xm be indeterminates, and consider an element 
of R[xu • • • , Xm\ of the form 

g(* l , • * ' , Xn) = Xi + gl(x2, • • • , Xm)Xi + • • • + gn(X2, • * • , Xm) . 

Iff(%u ' ' y Xm) is an element of R [xi, • • • , xm] such that for every choice 
of a2, • • • , am in R, f{x\y a2, • • • , am) is divisible by g{x\, a2, • • • , am) 
in R\x\\y then f(xi, • • • , xm) is divisible by g(xi, • • • , xm) in the ring 
J\. \X\» * * * j Xm J• 

Let x represent the composite set x2, • • • , xm\ and a the set of ele
ments #2, • • • , am of R. Then we may write 

gOl, • • • , Xm) = Xi + gl(x)Xi + • • • + gnO), 

and 

f(*l, ' ' ' , *m) = fo(x)Xi+ fi(x)Xi + ' ' ' +fp(x)> 

Now, by hypothesis, we have for arbitrary but fixed a a relation 
of the form 

fo(a)xi + • • • + fP(a) = [xi + gi(a)xi + • • • + gn(a)] 
(7) - p-n p-n-\ i 7 1 

• l*o*i + n\X\ + • • • + hp-n\, 

where the hi are elements of R. But equation (7) is equivalent to a 
set of p + 1 equations in R, obtained by equating the coefficients of 
the different powers of xi on each side of (7). These equations take 
the form 

/oO) = *o, 

/nN fi(a) = *i + Aogi(a), 

fp-n(a) = hp-n + hp-n-.!gi(a) + • • • + h0gp-n(a), 
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together with the set of equations 

(9) ft(a) = E higfa), t = p - n + 1, • • • , p. 

The equations (8) can be solved in turn for the hi, and these unique 
solutions take the form 

hi = Gi[fi(a)9 • • • , fP-n(a); gx(a), • • • , gv-n(a)\ i = 0, 1, • • • , p - n, 

where the d are polynomials with integral coefficients. Thus, in (7), 
the coefficients hi are uniquely determined by the choice of a. Now 
let us set 

ao) hi^ = Gi^x^ ' ' ' ' f*-»^'' s^*)' " ' > **-»(*)]> 
* = 0, 1, • • • , p - n, 

so that our original hi is hi(a). Then equations (9) state that for every 
a in R, 

ft(a) - X Ha)gi(a) = 0, 

and therefore, by hypothesis on R, it follows that 

(11) ft(x) = X Hx)gj(x), t = p - n+1,- • < ,p. 

But equations (10) and (11) are precisely the set of equations which 
state that 

f(Xl, ' ' ' , Xm) = g(#i, • • • , Xm)[A0(^)^f n + • • • + Ap-nO»)], 

and the lemma is established. 
We shall now prove the following theorem under the assumption 

on R which we have made throughout this section: 

THEOREM 4. /ƒ </>(xi, • • • , xm) is an element of R [xi, • * • , xm] with 
the property that <t>(Bi, • • • , Bm) = 0 for every Bu • • • , Bm which are 
commutative and satisfy (4), then <f>(xu • • • , xm) = 0 (m). 

In the proof of this theorem we shall not distinguish between the 
ring R and the ring of matrices of the form aly where a is in R. Ac
cordingly, we identify / with 1, the unit element of R. 

Let a2, • • • , am be arbitrary elements of R, and let us choose 

(12) Bx = — a2A2 — . . . — amAm, B2 = a2, • • • , Bm = 0 m . 

Then clearly condition (4) is satisfied, and by hypothesis we have 

<t>{Biy B2) • • • , Bm) = #C#i, #2, • • • , a™) = 0# 
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Now if F(xi, • • , xm) and Fn(xi> • • • , xm) have the same meaning as 
above, then clearly the determinant of X\ — B\ is F(xi, a2, • • • , aw), 
and the first minors of the matrix x± — B\ are precisely the 
Fij(xu a2, • • • , am), except possibly for sign. 

Since (j>(Bu a2, • • • , am) = 0, it follows by Theorem 2 that, in the 
ring JR [# I ] , <l>(xi, a2, • • • , am)Fij(xi, a2, • • • , am) is divisible by 
F(xi, a2, • • • , am), (i, 7 = 1, 2, • • • , n). But F(xu • • • , xm) is of the 
form of the g(xi, • • • , xm) in the lemma, and hence the lemma can 
be applied as the above holds for all choices of a2, • • • , am in R. Thus 

0(*i, * • • , xm)Fij(x1} • • • , »m) s 0 (i^Oi, • • • , »«)), i,j = 1, 2, • • • , », 

that is, 

</>Oi, • * • , *m) = 0 (m). 

This completes the proof of the theorem. 
We have established Theorem 4, following Ostrowski, not in fact 

under the assumption that 0C#i, • • • , Bm) = 0 for every Bh • • • , Bm 

which are commutative and satisfy (4), but under the weaker as
sumption that the B's may be restricted to be in the special form (12). 
Because of the homogeneity of the polynomials considered, it is not 
difficult to show that we can further restrict our hypothesis by as
suming always that am = 1. If, in the lemma, we consider only homo
geneous polynomials, we can also in it assume that a m = l . Thus, for 
the case m = 2, the lemma and Theorem 4 are true for any commuta
tive ring R with unit element. Theorem 4, so interpreted, then yields 
an actual generalization of Theorem 2. 

Note added in proof: The assumption that A\ = I is used, so far as 
Theorem 3 is concerned, only to make sure that F(xif • • • , xm) is not 
a divisor of zero in R[xi> • • • , xm]. The remarks to follow will show 
that it is certainly sufficient, although by no means necessary, to as
sume that for some iy \Ai\ is not a divisor of zero in R. 

If ab = 0, a 5*0, a is called an annihilator of b. I t is quite easy to 
prove, although this fact does not seem to be in the literature, that 
if g(xu ' ' ' y Xm) is an element of R[xi, • • • , xm] with an annihilator 
h(xi, • • • , xm) in R[xi, • • • , xm], then g(xi, • • • , xm) has an annihila
tor a in R. Otherwise expressed, g(x\, • • • , xm) is a divisor of zero in 
R[xi, - - - , Xm\ if and only if all coefficients in g are annihilated by 
the same element a of R. 

SMITH COLLEGE 


