ON THE SUPPORTING-PLANE PROPERTY OF A CONVEX BODY ${ }^{1}$

DAVID MOSKOVITZ AND L. L. DINES

In an earlier paper, ${ }^{2}$ the authors have shown that in a linear space \mathfrak{S} with an inner product, a set \mathfrak{M} which is closed and linearly connected is supported at a set of boundary points which is everywhere dense on the boundary of \mathfrak{M}, and an example is given to show that such a set \mathfrak{M} may have boundary points through which no supporting plane exists. The purpose of this paper is to show that if a set, in addition to being linearly connected and closed, also possesses inner points, then it is completely supported at its boundary points. In (I), reference was made to a paper by Ascoli in which such a result was obtained in a separable space. We do not assume our space \mathfrak{S} to be separable. The definitions and results of (I) will be used in this paper.

A set Ω, which is a proper subset of the space \mathbb{S}, will be called a convex body if it is linearly connected, closed, and possesses inner points. In the sequel \Re will always denote a convex body.

With reference to the set Ω, there is associated with each point x of the space \mathfrak{S} a nonnegative number $r(x)$: if x is an inner point of $\Omega, r(x)$ is defined as the least upper bound of the radii of spheres about x which do not contain points exterior to Ω; for other points of $\mathfrak{S}, r(x)$ is defined to be zero. We will call $r(x)$ the radius at the point x.

If x_{1} is a point of Ω, all points x of the sphere $\left\|x-x_{1}\right\| \leqq r\left(x_{1}\right)$ are points of Ω.

Theorem 1. Let r_{1} and r_{2} be the radii at the points x_{1} and x_{2}, respectively, of the convex body Ω. Then the radius r at the point

$$
x=x_{1}+k\left(x_{2}-x_{1}\right), \quad 0 \leqq k \leqq 1
$$

satisfies

$$
r \geqq r_{1}+k\left(r_{2}-r_{1}\right) .
$$

Proof. Let $y=x+\rho u$, where $\rho=r_{1}+k\left(r_{2}-r_{1}\right)$ and $\|u\|=1$. The points $y_{1}=x_{1}+r_{1} u$ and $y_{2}=x_{2}+r_{2} u$ are points of Ω. But from the definitions of x, ρ, and y, it follows that $y=y_{1}+k\left(y_{2}-y_{1}\right)$. Hence y, being on the segment joining y_{1} and y_{2}, is also a point of Ω. Consequently

[^0]all points on the boundary of the sphere with radius ρ and center x are in Ω. Since Ω is linearly connected, also all points within this sphere are in Ω. Therefore $r \geqq \rho$ and the theorem is established.

The following corollaries, which appear self-evident in ordinary space, can be shown to be direct consequences of the preceding theorem.

Corollary 1. Each point of the segment joining two inner points of Ω is an inner point of Ω.

Corollary 2. If x_{0} is a boundary point and x_{1} an inner point of Ω, then the points $x=x_{1}+k\left(x_{0}-x_{1}\right)$ are inner points of Ω for $0 \leqq k<1$, and exterior points for $k>1$.

With reference to a given boundary point x_{0} of the set \AA, there is associated with each point x, other than x_{0}, of the space \mathscr{S} a nonnegative number $s(x)$, defined by ${ }^{3}$

$$
s(x)=r(x) /\left\|x-x_{0}\right\|
$$

If x is an exterior point or a boundary point of Ω, other than x_{0}, $s(x)$ is equal to zero; if x is an inner point of $\Omega, s(x)$ is positive; $s\left(x_{0}\right)$ is not defined.

It is also obvious that $s(x) \leqq 1$, since $r(x) \leqq\left\|x-x_{0}\right\|$.
Theorem 2. Let x_{0} be a given boundary point of the convex body Ω, and let x_{t} be given by

$$
\begin{equation*}
x_{t}=x_{0}+t u, \quad \text { where } t>0,\|u\|=1 \tag{1}
\end{equation*}
$$

Then, for fixed u,
(a) $s\left(x_{t}\right)$ is a non-decreasing function as $t \rightarrow 0$; and
(b) $\lim _{t \rightarrow 0} s\left(x_{t}\right)$ exists.

Proof. In case there are no points of \Re given by (1), the theorem is obviously true, for then

$$
s\left(x_{t}\right)=0 \quad \text { for } t>0, \quad \lim _{t \rightarrow 0} s\left(x_{t}\right)=0
$$

In case there are points of Ω given by (1), let x_{1} and x_{2} be two points of Ω on (1) for parameter values t_{1} and t_{2}, where $t_{1}<t_{2}$; then we have

$$
\begin{align*}
x_{1} & =x_{0}+t_{1} u, & x_{2} & =x_{0}+t_{2} u \tag{2}\\
s\left(x_{1}\right) & =r\left(x_{1}\right) / t_{1}, & s\left(x_{2}\right) & =r\left(x_{2}\right) / t_{2}
\end{align*}
$$

[^1]But $x_{1}=x_{0}+\left(t_{1} / t_{2}\right)\left(x_{2}-x_{0}\right)$, and hence, by Theorem 1 , we have

$$
r\left(x_{1}\right) \geqq \frac{t_{1}}{t_{2}} r\left(x_{2}\right)
$$

since $r\left(x_{0}\right)=0$. Therefore, by (2), $s\left(x_{1}\right) \geqq s\left(x_{2}\right)$.
This result establishes part (a) of the theorem. Since $s\left(x_{t}\right)$ cannot exceed one, obviously part (b) of the theorem is true.

Let Σ be the unit sphere about x_{0}; and let p_{u} be the point on Σ given by $p_{u}=x_{0}+u,\|u\|=1$. Let $x_{t}=x_{0}+t u,(0<t<1)$, be the segment joining x_{0} to p_{u}; and let ${ }^{4}$

$$
\sigma(u)=\lim _{t \rightarrow 0} s\left(x_{t}\right)
$$

We thus have a function $\sigma(u)$ uniquely defined at each point p_{u} on the sphere Σ. Obviously, by its definition, we have

$$
0 \leqq \sigma(u) \leqq 1
$$

Also $\sigma(u)=0$ only if the segment joining x_{0} to p_{u} does not contain any inner points of Ω. If the segment joining x_{0} to p_{u} contains inner points of Ω, we have $\sigma(u)>0$.

Lemma 1. Let p_{u} and p_{v} be two points on Σ, such that

$$
p_{u}=x_{0}+u, \quad p_{v}=x_{0}+v, \quad v=-u
$$

Then at least one of the numbers $\sigma(u)$ or $\sigma(v)$ is equal to zero.
Proof. Assume $\sigma(u)>0$; then the segment joining x_{0} to p_{u} contains inner points. Consequently, by Corollary 2, the segment joining x_{0} to p_{v} does not contain any inner points. Therefore, $\sigma(v)=0$.

Theorem 3. Let x_{0} be a given boundary point of the convex body \Re, and let Σ be the unit sphere about x_{0}. Let p_{u} and p_{v} given by

$$
p_{u}=x_{0}+u, \quad\|u\|=1, \quad p_{v}=x_{0}+v, \quad\|v\|=1
$$

be two distinct points on Σ, for which $\sigma(u)$ and $\sigma(v)$ are both positive. Then there exists a point p_{w} distinct from p_{u} and p_{v} for which

$$
\sigma(w)>\frac{1}{2}[\sigma(u)+\sigma(v)] .
$$

[^2]Proof. Let x_{t} and y_{t} be points of Ω given by

$$
x_{t}=x_{0}+t u, \quad y_{t}=x_{0}+t v, \quad 0<t<1,
$$

and let $((u, v))=\lambda$. Then, certainly $|\lambda| \leqq 1$. But if $\lambda=1, u=v$, and p_{u} and p_{v} are not distinct. If $\lambda=-1, u=-v$, in which case not both of the numbers $\sigma(u)$ and $\sigma(v)$ can be positive, because of Lemma 1. Consequently, we have

$$
-1<\lambda<1
$$

Let $z_{t}=\frac{1}{2}\left(x_{t}+y_{t}\right)$; then $z_{t}=x_{0}+\xi t w$, where $\|w\|=1$ and $\xi=\frac{1}{2}(1+\lambda)^{1 / 2}$. Thus

$$
0<\xi<1 .
$$

We thus have a point p_{w} on the sphere Σ defined by $p_{w}=x_{0}+w$. Now, $r\left(z_{t}\right) \geqq \frac{1}{2}\left[r\left(x_{t}\right)+r\left(y_{t}\right)\right]$, by Theorem 1. Hence

$$
s\left(z_{t}\right)=\frac{r\left(z_{t}\right)}{\xi t} \geqq \frac{1}{2 \xi}\left[\frac{r\left(x_{t}\right)}{t}+\frac{r\left(y_{t}\right)}{t}\right]=\frac{1}{2 \xi}\left[s\left(x_{t}\right)+s\left(y_{t}\right)\right],
$$

and

$$
\lim _{t \rightarrow 0} s\left(z_{t}\right) \geqq \frac{1}{2 \xi} \lim _{t \rightarrow 0}\left[s\left(x_{t}\right)+s\left(y_{t}\right)\right]
$$

from which

$$
\sigma(w) \geqq \frac{1}{2 \xi}[\sigma(u)+\sigma(v)]>\frac{1}{2}[\sigma(u)+\sigma(v)] .
$$

Thus the theorem is established.
Let $\bar{\sigma}$ denote the least upper bound of the function $\sigma(u)$ as p_{u} varies over the sphere Σ. Then, also $0 \leqq \bar{\sigma} \leqq 1$; and $\bar{\sigma}=0$ is possible only for sets which do not have any inner points. For a convex body Ω, we have $0<\bar{\sigma} \leqq 1$.

In the material which follows, it is to be understood that x_{0} is a fixed boundary point of the convex body $\Omega, s(x)$ is defined relative to x_{0}, Σ is the unit sphere about $x_{0}, \sigma(u)$ is the function defined above on the boundary of Σ, and $\bar{\sigma}$ the least upper bound of $\sigma(u)$ on Σ.

Theorem 4. If there is a point p_{u} on Σ for which $\sigma(u)=\bar{\sigma}$, this point is unique.
Proof. Suppose, if possible, that there were a second point p_{v} for which $\sigma(v)=\bar{\sigma}$. Then, by Theorem 3, since $\bar{\sigma}>0$, there would be a point p_{w} for which

$$
\sigma(w)>\frac{1}{2}[\sigma(u)+\sigma(v)]=\bar{\sigma} .
$$

But since no $\sigma(w)$ can exceed $\bar{\sigma}$, there cannot be a second point p_{v} of the type described.

Theorem 5. Let p_{u} be a point on Σ for which $\sigma(u)=\bar{\sigma}$. If v satisfies the conditions $\|v\|=1$ and $((u, v))<0$, then the points $z_{t}=x_{0}+t v, t>0$, are exterior points of Ω.

Proof. Let $p_{u}=x_{0}+u,\|u\|=1$, and $p_{v}=x_{0}+v,\|v\|=1$; and let $((u, v))=-\lambda$, where $\lambda>0$. Assume, if possible, that there is a point $z=x_{0}+d v, d>0$, belonging to Ω. Let w be the projection (defined in (I)) of z on the line through x_{0} and p_{u}. Then

$$
w=p_{u}+c\left(x_{0}-p_{u}\right)
$$

where

$$
\begin{aligned}
c & =\frac{\left(\left(z-p_{u}, x_{0}-p_{u}\right)\right)}{\left\|p_{u}-x_{0}\right\|^{2}}=\left(\left(z-x_{0}-u,-u\right)\right) \\
& =((d v-u,-u))=1+\lambda d
\end{aligned}
$$

Hence,

$$
w=p_{u}-(1+\lambda d) u=x_{0}-\lambda d u .
$$

On the segment joining x_{0} to p_{u}, let $x_{t}=x_{0}+t u$ be an inner point of Ω. Let y_{t} be the projection of x_{0} on the line through x_{t} and z. Then

$$
y_{t}=x_{t}+k\left(z-x_{t}\right)
$$

where

$$
k=\frac{\left(\left(x_{0}-x_{t}, z-x_{t}\right)\right)}{\left\|z-x_{t}\right\|^{2}}=\frac{((-t u, d v-t u))}{\left\|z-x_{t}\right\|^{2}}=\frac{\lambda t d+t^{2}}{d^{2}+2 \lambda t d+t^{2}}
$$

since $z-x_{t}=z-x_{0}+x_{0}-x_{t}=d v-t u$ and

$$
\left\|z-x_{t}\right\|^{2}=d^{2}-2 t d((u, v))+t^{2}=d^{2}+2 \lambda t d+t^{2}
$$

From the above value of k, it is easily seen that $0<k<1$, which means that y_{t} is a point of Ω. The following are easily established:

$$
\left\|y_{t}-x_{0}\right\|^{2}=\frac{t^{2} d^{2}\left(1-\lambda^{2}\right)}{d^{2}+2 \lambda t d+t^{2}} \neq 0
$$

since $\lambda \neq \pm 1$, and

$$
\|z-w\|^{2}=d^{2}\left(1-\lambda^{2}\right)
$$

From these, and previous results, we obtain

$$
\frac{\left\|x_{t}-x_{0}\right\|^{2}}{\left\|y_{t}-x_{0}\right\|^{2}}=\frac{t^{2}\left(d^{2}+2 \lambda t d+t^{2}\right)}{t^{2} d^{2}\left(1-\lambda^{2}\right)}=\frac{d^{2}+2 \lambda t d+t^{2}}{d^{2}\left(1-\lambda^{2}\right)}=\frac{\left\|z-x_{t}\right\|^{2}}{\|z-w\|^{2}}
$$

Therefore, we have

$$
\begin{equation*}
\frac{\left\|x_{t}-x_{0}\right\|}{\left\|y_{t}-x_{0}\right\|}=\frac{\left\|z-x_{t}\right\|}{\|z-w\|} \tag{3}
\end{equation*}
$$

Now $s\left(y_{t}\right)=r\left(y_{t}\right) /\left\|y_{t}-x_{0}\right\|$ and $s\left(x_{t}\right)=r\left(x_{t}\right) /\left\|x_{t}-x_{0}\right\|$, where $r\left(y_{t}\right)$ and $r\left(x_{t}\right)$ denote the radii at the points y_{t} and x_{t}, respectively. Also $r\left(y_{t}\right) \geqq(1-k) r\left(x_{t}\right)$, by Theorem 1 and the definition of y_{t}. Hence

$$
\begin{align*}
\frac{s\left(y_{t}\right)}{s\left(x_{t}\right)}=\frac{r\left(y_{t}\right)}{\left\|y_{t}-x_{0}\right\|} \cdot \frac{\left\|x_{t}-x_{0}\right\|}{r\left(x_{t}\right)} & \geqq(1-k) \frac{\left\|x_{t}-x_{0}\right\|}{\left\|y_{t}-x_{0}\right\|} \\
& =(1-k) \frac{\left\|z-x_{t}\right\|}{\left\|z-w^{*}\right\|} \tag{4}
\end{align*}
$$

the last equality being a consequence of (3).
But $k=\left\|y_{t}-x_{t}\right\| /\left\|z-x_{t}\right\|$ and $1-k=\left\|z-y_{t}\right\| /\left\|z-x_{t}\right\|$. Therefore, from (4), we have

$$
\begin{equation*}
s\left(y_{t}\right) \geqq \frac{\left\|z-y_{t}\right\|}{\|z-w\|} s\left(x_{t}\right) . \tag{5}
\end{equation*}
$$

Now,

$$
\lim _{t \rightarrow 0} \frac{\left\|z-y_{t}\right\|}{\|z-w\|}=\frac{d}{d\left(1-\lambda^{2}\right)^{1 / 2}}=\frac{1}{\left(1-\lambda^{2}\right)^{1 / 2}}>1
$$

since z and w are independent of t, while $y_{t} \rightarrow x_{0}$ as $t \rightarrow 0$. Therefore, from (5),

$$
\lim _{t \rightarrow 0} s\left(y_{t}\right) \geqq \frac{1}{\left(1-\lambda^{2}\right)^{1 / 2}} \sigma(u)>\sigma(u)=\bar{\sigma}
$$

But this is impossible; hence the assumption that z was a point of Ω is untenable.

Theorem 6. Let p_{u} be a point on Σ for which $\sigma(u)=\bar{\sigma}$. Then the plane

$$
\begin{equation*}
\pi(x) \equiv\left(\left(u, x-x_{0}\right)\right)=0 \tag{6}
\end{equation*}
$$

is a supporting plane of Ω through the boundary point x_{0}.
Proof. If the plane (6) were not a supporting plane, there would be
a point z of Ω for which $\pi(z)<0$. Let $v=\left(z-x_{0}\right) /\left\|z-x_{0}\right\|$; then

$$
((u, v))=\frac{\pi(z)}{\left\|z-x_{0}\right\|}<0, \quad z=x_{0}+\left\|z-x_{0}\right\| v
$$

But, v satisfies the conditions of Theorem 5 ; therefore z must be an exterior point of Ω. Consequently, there cannot be a point z of Ω for which $\pi(z)<0$; and (6) is indeed a supporting plane.

Theorem 7. Let x_{0} be a given boundary point of the convex body Ω, and let Σ be the unit sphere about x_{0}. There is a unique point $p_{\bar{u}}$ on Σ for which $\sigma(\bar{u})=\bar{\sigma}$.

Proof. We have only to show the existence of one point $p_{\bar{u}}^{-}$for which $\sigma(\bar{u})=\bar{\sigma}$. The uniqueness of this point will follow from Theorem 4.

From the definition of $\bar{\sigma}$ it follows that for any preassigned $\epsilon>0$, there exists a point on Σ for which the value of σ is greater than $\bar{\sigma}-\epsilon$. Choose a monotone decreasing sequence of positive numbers $\left\{\epsilon_{n}\right\}$ with limit zero. Corresponding to each ϵ_{n} there exists a point $p_{u_{n}}$ on Σ for which $\sigma\left(u_{n}\right)>\bar{\sigma}-\epsilon_{n}$. We wish to show that the sequence of points $\left\{p_{u_{n}}\right\}$ on Σ converges.

Let $p_{u_{n}}=x_{0}+u_{n},\left\|u_{n}\right\|=1$, and $p_{u_{m}}=x_{0}+u_{m},\left\|u_{m}\right\|=1$. Then

$$
\begin{equation*}
\left\|p_{u_{n}}-p_{u_{m}}\right\|^{2}=2-2\left(\left(u_{n}, u_{m}\right)\right) \tag{7}
\end{equation*}
$$

Let $w=\frac{1}{2}(1 / \xi)\left(u_{n}+u_{m}\right)$, where ξ is so chosen that $\|w\|=1$. Then we have

$$
\begin{equation*}
\xi^{2}=\frac{1}{2}\left[1+\left(\left(u_{n}, u_{m}\right)\right)\right] . \tag{8}
\end{equation*}
$$

Let $p_{w}=x_{0}+w$; from the proof of Theorem 3, we know that

$$
\sigma(w) \geqq \frac{1}{2 \xi}\left[\sigma\left(u_{n}\right)+\sigma\left(u_{m}\right)\right]>\frac{1}{2 \xi}\left[2 \bar{\sigma}-\epsilon_{n}-\epsilon_{m}\right] .
$$

But $\bar{\sigma} \geqq \sigma(w)$; hence $\bar{\sigma}>(1 / \xi)\left[\bar{\sigma}-\left(\epsilon_{n}+\epsilon_{m}\right) / 2\right]$, from which

$$
\xi^{2}>\left[1-\frac{1}{2 \bar{\sigma}}\left(\epsilon_{n}+\epsilon_{m}\right)\right]^{2} .
$$

Using the value of ξ^{2} from (8) we easily find that

$$
\left(\left(u_{n}, u_{m}\right)\right)>2\left[1-\frac{1}{2 \bar{\sigma}}\left(\epsilon_{n}+\epsilon_{m}\right)\right]^{2}-1 .
$$

Then using (7), we obtain

$$
\begin{equation*}
\left\|p_{u_{n}}-p_{u_{m}}\right\|^{2}<\frac{4}{\bar{\sigma}}\left(\epsilon_{n}+\epsilon_{m}\right)-\frac{1}{\bar{\sigma}^{2}}\left(\epsilon_{n}+\epsilon_{m}\right)^{2} . \tag{9}
\end{equation*}
$$

Since $\lim _{n, m \rightarrow \infty}\left\|p_{u_{n}}-p_{u_{n}}\right\|=0$ and the space \mathbb{S} is complete, as was assumed in (I) and throughout this paper, the sequence $\left\{p_{u_{n}}\right\}$ converges to a point $p_{\bar{u}}$. This point $p_{\bar{u}}$ is on Σ, and moreover $\sigma(\bar{u})=\bar{\sigma}$, since it is easily shown that $\sigma(\bar{u})$ is greater than $\bar{\sigma}-\epsilon$ for any preassigned positive ϵ.

Theorem 8. A convex body Ω is completely supported at its boundary points.

Proof. Let x_{0} be a boundary point of Ω. There exists a point p_{u} on the unit sphere Σ about x_{0} for which $\sigma(u)=\bar{\sigma}$, by Theorem 7 . Hence the plane $\left(\left(u, x-x_{0}\right)\right)=0$ is a supporting plane of \Re through x_{0}, by Theorem 6. Since similar statements can be made for each boundary point, Ω is completely supported at its boundary points.

From the material above, the following additional result may be established without much difficulty:

Corollary 3. There exists a unique supporting plane through the boundary point x_{0} of the convex body Ω only if $\bar{\sigma}=1$; for $\bar{\sigma}<1$, there is an infinite number of supporting planes through x_{0}.

A primary classification of boundary points of a convex body may thus be made in terms of $\bar{\sigma}$, which is a function defined over the boundary of the convex body.

Carnegie Institute of Technology

[^0]: ${ }^{1}$ Presented to the Society, September 5, 1939.
 ${ }^{2}$ On convexity in a linear space with an inner product, Duke Mathematical Journal, vol. 5 (1939), pp. 520-534. Hereafter, this paper will be referred to by (I).

[^1]: ${ }^{3}$ Since s is a function of x_{0} as well as x, a more explicit notation would be $s\left(x_{0}, x\right)$; but the simpler notation will suffice, inasmuch as the function is to be used in the sequel only with reference to a fixed boundary point x_{0}.

[^2]: ${ }^{4}$ The limit was shown to exist in Theorem 2; we are denoting the value of this limit by $\sigma(u)$. It may be of interest to note that

 $$
 \sigma(u)=\lim _{x \rightarrow x_{0}, \text { along } x_{t}=x_{0}+t u} s(x)=\lim _{x \rightarrow x_{0}} \frac{r(x)-r\left(x_{0}\right)}{\left\|x-x_{0}\right\|}=r_{u}^{\prime}\left(x_{0}\right)
 $$

 is the directional derivative of $r(x)$ at x_{0} in the direction u.

