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Let F be a quotient field of a commutative domain of integrity o 
in which the usual arithmetic holds.1 Consider an algebra 21 with a 
unit element over F. Let 3i» 3k, 33, 34 be four arbitrary maximal 
orders in 21 and a, b, c be three arbitrary normal ideals. We prove the 
following theorems. 

THEOREM 1. If 3 i n 3 2 = 3s n 3 4 [or (3i, 3W = (3s, 3 0 ], then either 
3i = 3s, 3 2 = 3 4 or 3 i = 3 4 , 3 2 = 3 3 . 

THEOREM 2. Both the left and the right orders of (3i, 32) are 3 i H 3fe. 
Also 3 i H 32 = 3!3 if and only if (3i, 32) = 3!3; if this is the case the dis
tance ideal h^i of 32 to 3 i is divisible by the distance ideal'1 hz\ of 33 to S I -

THEOREM 3. The left, say, order 0 of the intersection a fl b [the sum 
(a, b)] is an intersection of two suitable maximal orders. 

More precisely, if r and 3 are normal ideals such that b = ra$ in 
the sense of proper multiplication and if t is the smallest two-sided 
ideal of the right order of a which divides $ while t ' is the largest two-
sided ideal of the same maximal order which is divisible by $, then 0 
is the intersection of the left orders of the two normal ideals a fl rat 
and afl ra t ' [(a, rat) and (a, ra t ' ) ] - 3 The left order of afl b coincides 
with the right order of (a~\ b"1). 

THEOREM 4. afl b £ c implies (a - 1 , b""1) 2 c - 1 and conversely. 

For the proof we have, according to the well known reduction, 
only to treat the case where F is a £-adic field F=FP and 21 is a nor
mal simple algebra over F. Then 21 is a (complete) matric ring 
Dr=^2ri,k=i€ikD over a division algebra D, where €»•*, is a system of 
matric units commutative with every element of D. D possesses a 
unique maximal order i", and / has a unique prime ideal P. 

Notation. If aik, (i, k = 1, 2, • • • , r), is a system of rational integers, 
we denote by M(aik) the ideal ]£*.*€**i>0''* in 2Ï. 

1 In the following we shall adopt the terminologies used in M. Deuring, Algebren, 
Ergebnisse der Mathematik, vol. 4, no. 1, 1935. 

2 If the algebra is a quaternion algebra, then the converse is also valid. Cf. 
M. Eichler, Journal für die reine und angewandte Mathematik, vol. 174 (1936), §7. 

3 Thus the intersection and the sum are no more normal ideals except for trivial 
cases; cf. Nakayama, Proceedings of the Imperial Academy of Japan, vol. 12 (1936). 

469 



470 TADASI NAKAYAMA [June 

M(aik) is an order if and only if au = 0, an+aik^aik for all i, k, L 
On assuming this condition it is a maximal order if and only if 
2^0^ = 0. By a simple calculation we then have the following lemma.4 

LEMMA 1. A necessary and sufficient condition that M(aik) be a maxi
mal order is that there should exist r rational integers Ci such that 
aik — ck — Ci. Every normal ideal whose left and right orders are M{ck — c,-) 
and M(dk — di) respectively has the form PaM(dk~Ci)=M(dk — Ci+a). 

I t follows from a lemma of Chevalley6 that a maximal order in 21 
has really the form M(aik) (whence the form M(ck — Ci)) whenever it 
contains all diagonal eu, e22, • • • , €rr. 

LEMMA 2. There exists a regular element a in 21 such that 

« _ 1 3ia = M(0), a-^2a = M(ck - a)\ cx ^ c2 ^ • • • è cr. 

PROOF. There is, as is well known, a regular element ]8 such that 
i8-13li8 = l f (0) . Consider the distance ideal bi2 = (3 2 3i ) - 1 = 3iô of & 
to 3fe. The theory of elementary divisors tells the existence of two 
units £, 7] in ikf(0) such that y = £l3~1ô(3r) is a diagonal matrix with di
agonal elements Pci, (ci*£ • • • *£cr), 7=X)€***-PC*'» where we denote, 
for the sake of convenience, a prime element of the prime ideal P by 
the same letter P . Put a = ̂ r]. Then this a possesses the required prop
erty : ar^ia = i r ^ S i / f y = M(Q), cr1$2pL=y-1M(0)y = M(ck - a). 

LEMMA 3. There exist two regular elements a, fi in% such that 

act/3 = M(0), ab/3 = M(dk - a); 

Cl è C2 è * ' ' ^ Cr, d\ ^ d% ^ • • • ^ r . 

PROOF. Let 3f/, 3f2' [3s , 3 / ] be the left and the right orders of a 
[b]. According to the above lemma there exist 7, /3 such that 

7- 13i 'Y=0- 132/3 = M(O), 7- 13 3
,7 = M ( ^ - ^ ) , p-^lp = M(dk' - # ) . 

7"1aj8 is a two-sided ideal of M(0) and has a form PaM(0). Put 
a = (7Pa)~1 . Then actj8 = Af(0). Moreover, a&# is of a form 
M(dk —Ci+b) (Lemma 1). We put dk = dk+b, and this completes 
the proof. 

We note further that the left order of an ideal M(aik) is M(bik) 
where &»•*. = max,- (a*-,- —a*/). 

After these preliminaries our theorems are easy to prove. In Theo
rem 1 we may, according to Lemma 2, assume that 3>i = M(0), 
Si = M(ck — Ci), ( c i ^ • • • ^cr). Suppose 3 i n 3*2 = 3s n 3f4. Since 

4 Cf. Nakayama, Japanese Journal of Mathematics, vol. 13 (1937), p. 339. 
6 Chevalley, Abhandlungen aus dem mathematischen Seminar der Hamburgischen 

Universitât, vol. 10 (1934), p. 87. 
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Ui e 3 i fl 3 2 i 3s, 3 4 , it follows that 3s, 3 4 have the form 3s = M(d* - dx), 
$A = M{fk—fi). Moreover max (dk-dit ƒ * - ƒ ; ) = max (0, c* —c<), 
(i, ft = l, 2, • • • , r), This implies max (d&—dt-, fk—fi)=0 if i^ft , 
whence di = • • • = dr a n d / i = • • • ^ / r . On applying the same rela
tion to i = 1, ft = r, we find that either di=drorfi =fr. In the first case 
we have di = • • • =dr, fi—fi — ci — Ci, (i = l, 2, • • • , r), whence 
3 i = 3fo, 32 = 34. The second case gives of course 3 i = 34, 32 = 33-

The assertion about the sum follows now from Theorem 2, which is 
in turn contained in Theorems 3 and 4. 

As to Theorem 3 we notice first that if a, /3 are two regular ele
ments, the ideals axcr1, jS^SjS, jS-^tjS, fi'H'fi have the same signifi
cance for aa/3 and abf3 as the ideals r, $, t, t ' have for a and b. Hence 
it is sufficient, by Lemma 3, to consider the case where 

a = ikf(0), b = M(dk-a); 

Cl è 2̂ à * • * = Cr, d\ = J2 = * ' * = ^r» 

Then an b = M(max (0, dk — Ci)) and o = M(a*jb) with 

ai/t = max,- (max (0, dj — ct) — max (0, dj — ck)) 

ƒ max (0, J i — d) — max (0, di — c&) = ƒ * — ƒ* for f = ft, 

(max (0, dr — e»-) — max (0, dr — ct) = gk — g* for i = ft, 

where ƒ»•=— max (0, di — Ci), gi= —max (0, dr — Ci). Since ƒ & —ƒ,- = or 
Sgk — gi according as i = ft or i^ft , we find that o is the intersection 
of the two maximal orders M(fk—fi) and M(gk — gi). Further, if we 
p u t 7 = Z X ' ^ ~ c % *=£c«-P"< ,S then r=YPaikf(0) and S = ikf(0)P-a5, 
whence t = Pö~drikf (0), t ' = Pd l-aAf(0). From this we can easily verify 
the precise characterization of o given in the theorem. 

The part on the sum (a, b) can be shown by a similar computation. 
And indeed from that computation we obtain the last assertion in the 
theorem. 

Finally, to prove Theorem 4 we observe again that we have only to 
consider the case where a, b have the form (1). a n b = M(max (0, 
dk — Ci), (cr1, b~1)=M(min (0, ck—dt)) because b~x = M(ck — di), and 
here we notice that max (0, dk — ci) = — min (0, Ci—dk). The third 
normal ideal c can be expressed as c = T-W(0)<r~1 with regular ele
ments <r=][̂ €;fcSifc, T=^2eiktik. Let Pcik be the exact power of P which 
divides sik, Pcik\\sik; if sik = 0 we put cik=co. Let similarly Pdik\\tik. 
I t is evident that M(aik), with a system of rational integers aikf con
tains c_1 = (7ikf(0)r if and only if 

(2) en + dxk = aik} for all i, j , ft, I. 
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Hence, if we show that the same condition is also necessary and 
sufficient in order that M(—aki) i c, then we will be through. But 
this is also easy to see. For, c = T~1M(O)O--1 consists of all rç = ] £ e ^ a 
= T-l(£eikXik)(J~l with xik e I . On taking a pair (j, I) of indices, let 
us consider those rj such that yik = 0 for (i, k)?£(j, l). In other words, 
we consider the equation r""1^6**^**)0""1 — *nyn- But this is equiva
lent to ^2eikXik = Tejiyji(iy or 

(3) Xik = UjjjiSik, i, k = 1, 2, • • • , r. 

Suppose now M{—-a^Oic. Then (3) with y3'i = P~alJ must have a 
solution Xik e J. Hence O^dij — aij+cik (for all i, &). Since (j, I) was an 
arbitrary pair of indices, we have thus established (2). Assume con
versely (2). Then obviously Xik = ti3P~'a^Sik e I whence €jiP~aiJ t cand 
M ( - a w ) S c 

A second proof of the last part of Theorem 3 is as follows: We ob
serve first that every ideal m in 21 is additively generated by regular 
elements contained in m.6 For, if J £ m we take a scalar element a (t F) 
in m different from all the characteristic roots of the matrix which 
represents £ in a faithful representation of St. Then £—a (e m) is evi
dently a regular element and £ = (£ — a)+a. Now, let a be any regu
lar element from the left order of a H b;a(a fl b) £ a fl h. Since act and 
ab are normal ideals, we have, from Theorem 4, (a_ 1a - 1 , Ir^or1) 2 a-1, 
b~l whence (a"1, o-1)**-1 i ( c r \ b"1), (a"1, b"1) i (a"1, b " 1 ) ^ "This 
shows that the left order of a fl b is contained in the right order of 
(a - 1 , b~l). But the converse can be seen in quite a similar manner. 

Remark. The structure of the residue class algebra^i H 3fe//>(3i H ^2) 
is easy to analyze, but perhaps does not deserve a detailed discussion. 
We merely note that the algebra is not symmetric, in fact is not 
weakly symmetric,7 except for the trivial case (3!i)p==(3i2)p; this re
mark may be of some interest in view of a recent paper by R. Brauer.8 
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6 We exclude here the trivial case of a finite underlying field F. 
7 See Brauer-Nesbitt, Proceedings of the National Academy of Sciences, vol. 23 

(1937); Nakayama-Nesbitt, Annals of Mathematics, (2), vol. 39 (1938). 
8 Brauer, On modular and p-adic representations of algebras, Proceedings of the 

National Academy of Sciences, vol. 25 (1939). 


