A REMARK ON THE SUM AND THE INTERSECTION OF TWO NORMAL IDEALS IN AN ALGEBRA

TADASI NAKAYAMA

Let F be a quotient field of a commutative domain of integrity oin which the usual arithmetic holds.¹ Consider an algebra \mathfrak{A} with a unit element over F. Let \mathfrak{F}_1 , \mathfrak{F}_2 , \mathfrak{F}_3 , \mathfrak{F}_4 be four arbitrary maximal orders in \mathfrak{A} and \mathfrak{a} , \mathfrak{b} , \mathfrak{c} be three arbitrary normal ideals. We prove the following theorems.

THEOREM 1. If $\mathfrak{P}_1 \cap \mathfrak{P}_2 = \mathfrak{P}_3 \cap \mathfrak{P}_4$ [or $(\mathfrak{P}_1, \mathfrak{P}_2) = (\mathfrak{P}_3, \mathfrak{P}_4)$], then either $\mathfrak{P}_1 = \mathfrak{P}_3, \mathfrak{P}_2 = \mathfrak{P}_4$ or $\mathfrak{P}_1 = \mathfrak{P}_4, \mathfrak{P}_2 = \mathfrak{P}_3$.

THEOREM 2. Both the left and the right orders of $(\mathfrak{F}_1, \mathfrak{F}_2)$ are $\mathfrak{F}_1 \cap \mathfrak{F}_2$. Also $\mathfrak{F}_1 \cap \mathfrak{F}_2 \subseteq \mathfrak{F}_3$ if and only if $(\mathfrak{F}_1, \mathfrak{F}_2) \supseteq \mathfrak{F}_3$; if this is the case the distance ideal \mathfrak{F}_{21} of \mathfrak{F}_2 to \mathfrak{F}_1 is divisible by the distance ideal² \mathfrak{d}_{31} of \mathfrak{F}_3 to \mathfrak{F}_1 .

THEOREM 3. The left, say, order \mathfrak{o} of the intersection $\mathfrak{a} \cap \mathfrak{b}$ [the sum $(\mathfrak{a}, \mathfrak{b})$] is an intersection of two suitable maximal orders.

More precisely, if r and \mathfrak{s} are normal ideals such that $\mathfrak{b} = \mathfrak{ras}$ in the sense of proper multiplication and if t is the smallest two-sided ideal of the right order of a which divides \mathfrak{s} while t' is the largest twosided ideal of the same maximal order which is divisible by \mathfrak{s} , then \mathfrak{o} is the intersection of the left orders of the two normal ideals \mathfrak{anrat} and \mathfrak{anrat}' [($\mathfrak{a}, \mathfrak{rat}$) and ($\mathfrak{a}, \mathfrak{rat}'$)].³ The left order of \mathfrak{anb} coincides with the right order of ($\mathfrak{a}^{-1}, \mathfrak{b}^{-1}$).

THEOREM 4. $a \cap b \subseteq c$ implies $(a^{-1}, b^{-1}) \supseteq c^{-1}$ and conversely.

For the proof we have, according to the well known reduction, only to treat the case where F is a p-adic field $F = F_p$ and \mathfrak{A} is a normal simple algebra over F. Then \mathfrak{A} is a (complete) matric ring $D_r = \sum_{i,k=1}^r \epsilon_{ik} D$ over a division algebra D, where ϵ_{ik} is a system of matric units commutative with every element of D. D possesses a unique maximal order I, and I has a unique prime ideal P.

Notation. If a_{ik} , $(i, k = 1, 2, \dots, r)$, is a system of rational integers, we denote by $M(a_{ik})$ the ideal $\sum_{i,k} \epsilon_{ik} P^{a_{ik}}$ in \mathfrak{A} .

¹ In the following we shall adopt the terminologies used in M. Deuring, *Algebren*, Ergebnisse der Mathematik, vol. 4, no. 1, 1935.

² If the algebra is a quaternion algebra, then the converse is also valid. Cf. M. Eichler, Journal für die reine und angewandte Mathematik, vol. 174 (1936), §7.

⁸ Thus the intersection and the sum are no more normal ideals except for trivial cases; cf. Nakayama, Proceedings of the Imperial Academy of Japan, vol. 12 (1936).

[June

 $M(a_{ik})$ is an order if and only if $a_{ii}=0$, $a_{il}+a_{lk} \ge a_{ik}$ for all *i*, *k*, *l*. On assuming this condition it is a maximal order if and only if $\sum a_{ik}=0$. By a simple calculation we then have the following lemma.⁴

LEMMA 1. A necessary and sufficient condition that $M(a_{ik})$ be a maximal order is that there should exist r rational integers c_i such that $a_{ik} = c_k - c_i$. Every normal ideal whose left and right orders are $M(c_k - c_i)$ and $M(d_k - d_i)$ respectively has the form $P^aM(d_k - c_i) = M(d_k - c_i + a)$.

It follows from a lemma of Chevalley⁵ that a maximal order in \mathfrak{A} has really the form $M(a_{ik})$ (whence the form $M(c_k - c_i)$) whenever it contains all diagonal ϵ_{11} , ϵ_{22} , \cdots , ϵ_{rr} .

LEMMA 2. There exists a regular element α in \mathfrak{A} such that

$$\alpha^{-1}\mathfrak{Y}_1\alpha = M(0), \quad \alpha^{-1}\mathfrak{Y}_2\alpha = M(c_k - c_i); \qquad c_1 \geq c_2 \geq \cdots \geq c_r.$$

PROOF. There is, as is well known, a regular element β such that $\beta^{-1}\Im_1\beta = M(0)$. Consider the distance ideal $\vartheta_{12} = (\Im_2\Im_1)^{-1} = \Im_1\vartheta$ of \Im_1 to \Im_2 . The theory of elementary divisors tells the existence of two units ξ , η in M(0) such that $\gamma = \xi\beta^{-1}\delta\beta\eta$ is a diagonal matrix with diagonal elements P^{c_i} , $(c_1 \ge \cdots \ge c_r)$, $\gamma = \sum \epsilon_{ii}P^{c_i}$, where we denote, for the sake of convenience, a prime element of the prime ideal P by the same letter P. Put $\alpha = \beta\eta$. Then this α possesses the required property: $\alpha^{-1}\Im_1\alpha = \eta^{-1}\Im_1\beta\eta = M(0)$, $\alpha^{-1}\Im_2\alpha = \gamma^{-1}M(0)\gamma = M(c_k - c_i)$.

LEMMA 3. There exist two regular elements α , β in \mathfrak{A} such that

$$\alpha \mathfrak{a} \beta = M(0), \qquad \alpha \mathfrak{b} \beta = M(d_k - c_i);$$
$$c_1 \ge c_2 \ge \cdots \ge c_r, \ d_1 \ge d_2 \ge \cdots \ge d_r.$$

PROOF. Let $\mathfrak{F}'_1, \mathfrak{F}'_2$ [$\mathfrak{F}'_3, \mathfrak{F}'_4$] be the left and the right orders of a [b]. According to the above lemma there exist γ , β such that $\gamma^{-1}\mathfrak{F}'_1\gamma=\beta^{-1}\mathfrak{F}'_2\beta=M(0), \gamma^{-1}\mathfrak{F}'_3\gamma=M(c_k-c_i), \beta^{-1}\mathfrak{F}'_4\beta=M(d_k'-d_i').$ $\gamma^{-1}\mathfrak{a}\beta$ is a two-sided ideal of M(0) and has a form $P^aM(0)$. Put $\alpha=(\gamma P^a)^{-1}$. Then $\alpha\mathfrak{a}\beta=M(0)$. Moreover, $\alpha\mathfrak{b}\beta$ is of a form $M(d_k'-c_i+b)$ (Lemma 1). We put $d_k=d_k'+b$, and this completes the proof.

We note further that the left order of an ideal $M(a_{ik})$ is $M(b_{ik})$ where $b_{ik} = \max_i (a_{ij} - a_{kj})$.

After these preliminaries our theorems are easy to prove. In Theorem 1 we may, according to Lemma 2, assume that $\mathfrak{F}_1 = M(0)$, $\mathfrak{F}_2 = M(c_k - c_i)$, $(c_1 \ge \cdots \ge c_r)$. Suppose $\mathfrak{F}_1 \cap \mathfrak{F}_2 = \mathfrak{F}_3 \cap \mathfrak{F}_4$. Since

⁴ Cf. Nakayama, Japanese Journal of Mathematics, vol. 13 (1937), p. 339.

⁵ Chevalley, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 10 (1934), p. 87.

 $\begin{aligned} \epsilon_{ii} \epsilon \mathfrak{Y}_1 \mathsf{n} \mathfrak{Y}_2 &\subseteq \mathfrak{Y}_3, \mathfrak{Y}_4, \text{it follows that } \mathfrak{Y}_3, \mathfrak{Y}_4 \text{ have the form } \mathfrak{Y}_3 = M(d_k - d_i), \\ \mathfrak{Y}_4 &= M(f_k - f_i). \text{ Moreover max } (d_k - d_i, f_k - f_i) = \max (0, c_k - c_i), \\ (i, k = 1, 2, \cdots, r). \text{ This implies max } (d_k - d_i, f_k - f_i) = 0 \text{ if } i \geq k, \\ \text{whence } d_1 \geq \cdots \geq d_r \text{ and } f_1 \geq \cdots \geq f_r. \text{ On applying the same relation to } i = 1, k = r, \text{ we find that either } d_1 = d_r \text{ or } f_1 = f_r. \text{ In the first case} \\ \text{we have } d_1 = \cdots = d_r, f_1 - f_i = c_1 - c_i, (i = 1, 2, \cdots, r), \text{ whence } \\ \mathfrak{Y}_1 = \mathfrak{Y}_3, \mathfrak{Y}_2 = \mathfrak{Y}_4. \text{ The second case gives of course } \mathfrak{Y}_1 = \mathfrak{Y}_4, \mathfrak{Y}_2 = \mathfrak{Y}_3. \end{aligned}$

The assertion about the sum follows now from Theorem 2, which is in turn contained in Theorems 3 and 4.

As to Theorem 3 we notice first that if α , β are two regular elements, the ideals $\alpha r \alpha^{-1}$, $\beta^{-1} \mathfrak{s} \beta$, $\beta^{-1} \mathfrak{t} \beta$, $\beta^{-1} \mathfrak{t}' \beta$ have the same significance for $\alpha \mathfrak{a} \beta$ and $\alpha \mathfrak{b} \beta$ as the ideals \mathfrak{r} , \mathfrak{s} , \mathfrak{t} , \mathfrak{t}' have for \mathfrak{a} and \mathfrak{b} . Hence it is sufficient, by Lemma 3, to consider the case where

(1)
$$\mathfrak{a} = M(0), \qquad \mathfrak{b} = M(d_k - c_i); \\ c_1 \geq c_2 \geq \cdots \geq c_r, \ d_1 \geq d_2 \geq \cdots \geq d_r.$$

Then $\mathfrak{a} \cap \mathfrak{b} = M(\max(0, d_k - c_i))$ and $\mathfrak{o} = M(a_{ik})$ with

$$a_{ik} = \max_{i} (\max (0, d_{i} - c_{i}) - \max (0, d_{i} - c_{k}))$$

$$= \begin{cases} \max (0, d_{1} - c_{i}) - \max (0, d_{1} - c_{k}) = f_{k} - f_{i} \text{ for } i \geq k, \\ \max (0, d_{r} - c_{i}) - \max (0, d_{r} - c_{i}) = g_{k} - g_{i} \text{ for } i \leq k, \end{cases}$$

where $f_i = -\max(0, d_1 - c_i), g_i = -\max(0, d_r - c_i)$. Since $f_k - f_i \ge$ or $\le g_k - g_i$ according as $i \ge k$ or $i \le k$, we find that \mathfrak{o} is the intersection of the two maximal orders $M(f_k - f_i)$ and $M(g_k - g_i)$. Further, if we put $\gamma = \sum \epsilon_{ii} P^{-c_i}, \ \delta = \sum \epsilon_{ii} P^{-d_i}$, then $\mathfrak{r} = \gamma P^a M(0)$ and $\mathfrak{s} = M(0) P^{-a} \delta$, whence $\mathfrak{t} = P^{a-d_r} M(0), \ \mathfrak{t}' = P^{d_1 - a} M(0)$. From this we can easily verify the precise characterization of \mathfrak{o} given in the theorem.

The part on the sum (a, b) can be shown by a similar computation. And indeed from that computation we obtain the last assertion in the theorem.

Finally, to prove Theorem 4 we observe again that we have only to consider the case where a, b have the form (1). a $\cap b = M(\max(0, d_k - c_i), (a^{-1}, b^{-1}) = M(\min(0, c_k - d_i))$ because $b^{-1} = M(c_k - d_i)$, and here we notice that max $(0, d_k - c_i) = -\min(0, c_i - d_k)$. The third normal ideal c can be expressed as $c = \tau^{-1}M(0)\sigma^{-1}$ with regular elements $\sigma = \sum \epsilon_{ik} s_{ik}, \tau = \sum \epsilon_{ik} t_{ik}$. Let P^{cik} be the exact power of P which divides $s_{ik}, P^{cik} || s_{ik}$; if $s_{ik} = 0$ we put $c_{ik} = \infty$. Let similarly $P^{dik} || t_{ik}$. It is evident that $M(a_{ik})$, with a system of rational integers a_{ik} , contains $c^{-1} = \sigma M(0)\tau$ if and only if

(2)
$$c_{ij} + d_{lk} \ge a_{ik},$$
 for all i, j, k, l .

TADASI NAKAYAMA

Hence, if we show that the same condition is also necessary and sufficient in order that $M(-a_{ki}) \subseteq c$, then we will be through. But this is also easy to see. For, $c = \tau^{-1}M(0)\sigma^{-1}$ consists of all $\eta = \sum \epsilon_{ik}y_{ik} = \tau^{-1}(\sum \epsilon_{ik}x_{ik})\sigma^{-1}$ with $x_{ik} \in I$. On taking a pair (j, l) of indices, let us consider those η such that $y_{ik} = 0$ for $(i, k) \neq (j, l)$. In other words, we consider the equation $\tau^{-1}(\sum \epsilon_{ik}x_{ik})\sigma^{-1} = \epsilon_{jl}y_{jl}$. But this is equivalent to $\sum \epsilon_{ik}x_{ik} = \tau \epsilon_{jl}y_{jl}\sigma$, or

(3)
$$x_{ik} = t_{ij}y_{jl}s_{lk}, \qquad i, k = 1, 2, \cdots, r.$$

Suppose now $M(-a_{ki}) \subseteq \mathfrak{c}$. Then (3) with $y_{jl} = P^{-a_{lj}}$ must have a solution $x_{ik} \in I$. Hence $0 \leq d_{ij} - a_{lj} + c_{lk}$ (for all i, k). Since (j, l) was an arbitrary pair of indices, we have thus established (2). Assume conversely (2). Then obviously $x_{ik} = t_{ij}P^{-a_{lj}}s_{lk} \in I$ whence $\epsilon_{jl}P^{-a_{lj}} \in \mathfrak{c}$ and $M(-a_{ki}) \subseteq \mathfrak{c}$.

A second proof of the last part of Theorem 3 is as follows: We observe first that every ideal m in \mathfrak{A} is additively generated by regular elements contained in m.⁶ For, if $\xi \in \mathfrak{m}$ we take a scalar element $a (\varepsilon F)$ in m different from all the characteristic roots of the matrix which represents ξ in a faithful representation of \mathfrak{A} . Then $\xi - a$ ($\varepsilon \mathfrak{m}$) is evidently a regular element and $\xi = (\xi - a) + a$. Now, let α be any regular element from the left order of $\mathfrak{a} \cap \mathfrak{b}$; $\alpha(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{a} \cap \mathfrak{b}$. Since $\alpha \mathfrak{a}$ and $\alpha \mathfrak{b}$ are normal ideals, we have, from Theorem 4, $(\mathfrak{a}^{-1}\alpha^{-1}, \mathfrak{b}^{-1}\alpha^{-1}) \supseteq \mathfrak{a}^{-1}$, \mathfrak{b}^{-1} whence $(\mathfrak{a}^{-1}, \mathfrak{b}^{-1})\alpha^{-1} \supseteq (\mathfrak{a}^{-1}, \mathfrak{b}^{-1})$, $(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}) \supseteq (\mathfrak{a}^{-1}, \mathfrak{b}^{-1})\alpha$. This shows that the left order of $\mathfrak{a} \cap \mathfrak{b}$ is contained in the right order of $(\mathfrak{a}^{-1}, \mathfrak{b}^{-1})$. But the converse can be seen in quite a similar manner.

Remark. The structure of the residue class algebra $\mathfrak{F}_1 \cap \mathfrak{F}_2/p(\mathfrak{F}_1 \cap \mathfrak{F}_2)$ is easy to analyze, but perhaps does not deserve a detailed discussion. We merely note that the algebra is not symmetric, in fact is not weakly symmetric,⁷ except for the trivial case $(\mathfrak{F}_1)_p = (\mathfrak{F}_2)_p$; this remark may be of some interest in view of a recent paper by R. Brauer.⁸

472

THE INSTITUTE FOR ADVANCED STUDY

 $^{^{6}}$ We exclude here the trivial case of a finite underlying field F.

⁷ See Brauer-Nesbitt, Proceedings of the National Academy of Sciences, vol. 23 (1937); Nakayama-Nesbitt, Annals of Mathematics, (2), vol. 39 (1938).

⁸ Brauer, On modular and p-adic representations of algebras, Proceedings of the National Academy of Sciences, vol. 25 (1939).