A REMARK ON THE SUM AND THE INTERSECTION OF TWO NORMAL IDEALS IN AN ALGEBRA

TADASI NAKAYAMA

Let F be a quotient field of a commutative domain of integrity o in which the usual arithmetic holds. ${ }^{1}$ Consider an algebra \mathfrak{N} with a unit element over F. Let $\Im_{1}, \Im_{2}, \Im_{3}, \Im_{4}$ be four arbitrary maximal orders in \mathfrak{A} and $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be three arbitrary normal ideals. We prove the following theorems.

Theorem 1. If $\mathfrak{Y}_{1} \cap \Im_{2}=\Im_{3} \cap \Im_{4}\left[\right.$ or $\left.\left(\Im_{1}, \mathfrak{Y}_{2}\right)=\left(\mathfrak{Y}_{3}, \Im_{4}\right)\right]$, then either $\mathfrak{\Im}_{1}=\Im_{3}, \mathfrak{Y}_{2}=\Im_{4}$ or $\mathfrak{\Im}_{1}=\Im_{4}, \mathfrak{Y}_{2}=\Im_{3}$.

Theorem 2. Both the left and the right orders of $\left(\mathfrak{S}_{1}, \mathfrak{Y}_{2}\right)$ are $\mathfrak{Y}_{1} \cap \mathfrak{Y}_{2}$. Also $\Im_{1} \cap \Im_{2} \subseteq \Im_{3}$ if and only if $\left(\Im_{1}, \Im_{2}\right) \supseteq \Im_{3}$; if this is the case the distance ideal \mathfrak{D}_{21} of \Im_{2} to \Im_{1} is divisible by the distance ideal ${ }^{2} \mathfrak{D}_{31}$ of \Im_{3} to $\mathfrak{\Im}_{1}$.

Theorem 3. The left, say, order \mathfrak{o} of the intersection $\mathfrak{a} \mathfrak{b}$ [the sum $(\mathfrak{a}, \mathfrak{b})]$ is an intersection of two suitable maximal orders.
More precisely, if \mathfrak{r} and $\&$ are normal ideals such that $\mathfrak{b}=\mathfrak{r a z}$ in the sense of proper multiplication and if t is the smallest two-sided ideal of the right order of \mathfrak{a} which divides $₹$ while t^{\prime} is the largest twosided ideal of the same maximal order which is divisible by \mathbb{B}, then 0 is the intersection of the left orders of the two normal ideals $\mathfrak{a} \mathfrak{r a t}$ and $\mathfrak{a} \boldsymbol{n} \mathfrak{r a t}^{\prime}[(\mathfrak{a}, \mathfrak{r a t})$ and $(\mathfrak{a}, \mathfrak{r a t})] .{ }^{3}$ The left order of $\mathfrak{a} \mathfrak{n}$ coincides with the right order of $\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right)$.

Theorem 4. $\mathfrak{a} \cap \mathfrak{b} \leqq c$ implies $\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right) \supseteq \mathfrak{c}^{-1}$ and conversely.
For the proof we have, according to the well known reduction, only to treat the case where F is a p-adic field $F=F_{p}$ and \mathfrak{Q} is a normal simple algebra over F. Then \mathfrak{A} is a (complete) matric ring $D_{r}=\sum_{i, k=1}^{r} \epsilon_{i k} D$ over a division algebra D, where $\epsilon_{i k}$ is a system of matric units commutative with every element of $D . D$ possesses a unique maximal order I, and I has a unique prime ideal P.

Notation. If $a_{i k},(i, k=1,2, \cdots, r)$, is a system of rational integers, we denote by $M\left(a_{i k}\right)$ the ideal $\sum_{i, k} \epsilon_{i k} P^{a_{i k}}$ in \mathfrak{N}.

[^0]$M\left(a_{i k}\right)$ is an order if and only if $a_{i i}=0, a_{i l}+a_{l k} \geqq a_{i k}$ for all i, k, l. On assuming this condition it is a maximal order if and only if $\sum a_{i k}=0$. By a simple calculation we then have the following lemma. ${ }^{4}$

Lemma 1. A necessary and sufficient condition that $M\left(a_{i k}\right)$ be a maximal order is that there should exist r rational integers c_{i} such that $a_{i k}=c_{k}-c_{i}$. Every normal ideal whose left and right orders are $M\left(c_{k}-c_{i}\right)$ and $M\left(d_{k}-d_{i}\right)$ respectively has the form $P^{a} M\left(d_{k}-c_{i}\right)=M\left(d_{k}-c_{i}+a\right)$.

It follows from a lemma of Chevalley ${ }^{5}$ that a maximal order in \mathfrak{A} has really the form $M\left(a_{i k}\right)$ (whence the form $M\left(c_{k}-c_{i}\right)$) whenever it contains all diagonal $\epsilon_{11}, \epsilon_{22}, \cdots, \epsilon_{r r}$.

Lemma 2. There exists a regular element α in \mathfrak{A} such that

$$
\alpha^{-1} \Im_{1} \alpha=M(0), \quad \alpha^{-1} \Im_{2} \alpha=M\left(c_{k}-c_{i}\right) ; \quad c_{1} \geqq c_{2} \geqq \cdots \geqq c_{r}
$$

Proof. There is, as is well known, a regular element β such that $\beta^{-1} \mathfrak{\Im}_{1} \beta=M(0)$. Consider the distance ideal $\mathfrak{d}_{12}=\left(\Im_{2} \Im_{1}\right)^{-1}=\Im_{1} \delta$ of \Im_{1} to \Im_{2}. The theory of elementary divisors tells the existence of two units ξ, η in $M(0)$ such that $\gamma=\xi \beta^{-1} \delta \beta \eta$ is a diagonal matrix with diagonal elements $P^{c i},\left(c_{1} \geqq \cdots \geqq c_{r}\right), \gamma=\sum \epsilon_{i i} P^{c i}$, where we denote, for the sake of convenience, a prime element of the prime ideal P by the same letter P. Put $\alpha=\beta \eta$. Then this α possesses the required property: $\alpha^{-1} \mathfrak{Y}_{1} \alpha=\eta^{-1} \beta^{-1} \mathfrak{Y}_{1} \beta \eta=M(0), \alpha^{-1} \mathfrak{Y}_{2} \alpha=\gamma^{-1} M(0) \gamma=M\left(c_{k}-c_{i}\right)$.

Lemma 3. There exist two regular elements α, β in \mathfrak{A} such that

$$
\begin{aligned}
& \alpha \mathfrak{a} \beta=M(0), \quad \alpha \mathfrak{b} \beta=M\left(d_{k}-c_{i}\right) ; \\
& c_{1} \geqq c_{2} \geqq \cdots \geqq c_{r}, d_{1} \geqq d_{2} \geqq \cdots \geqq d_{r} .
\end{aligned}
$$

Proof. Let $\Im_{1}^{\prime}, \Im_{2}^{\prime}\left[\Im_{3}^{\prime}, \Im_{4}^{\prime}\right]$ be the left and the right orders of \mathfrak{a} [b]. According to the above lemma there exist γ, β such that $\gamma^{-1} \mathfrak{Y}_{1}^{\prime} \gamma=\beta^{-1} \mathfrak{Y}_{2}^{\prime} \beta=M(0), \gamma^{-1} \mathfrak{Y}_{3}^{\prime} \gamma=M\left(c_{k}-c_{i}\right), \beta^{-1} \mathfrak{Y}_{4}^{\prime} \beta=M\left(d_{k}^{\prime}-d_{i}^{\prime}\right)$. $\gamma^{-1} \mathfrak{a} \beta$ is a two-sided ideal of $M(0)$ and has a form $P^{a} M(0)$. Put $\alpha=\left(\gamma P^{a}\right)^{-1}$. Then $\alpha \mathfrak{a} \beta=M(0)$. Moreover, $\alpha \mathfrak{b} \beta$ is of a form $M\left(d_{k}^{\prime}-c_{i}+b\right)$ (Lemma 1). We put $d_{k}=d_{k}^{\prime}+b$, and this completes the proof.

We note further that the left order of an ideal $M\left(a_{i k}\right)$ is $M\left(b_{i k}\right)$ where $b_{i k}=\max _{j}\left(a_{i j}-a_{k j}\right)$.

After these preliminaries our theorems are easy to prove. In Theorem 1 we may, according to Lemma 2, assume that $\Im_{1}=M(0)$, $\mathfrak{Y}_{2}=M\left(c_{k}-c_{i}\right), \quad\left(c_{1} \geqq \cdots \geqq c_{r}\right)$. Suppose $\Im_{1} \cap \Im_{2}=\Im_{3} \cap \Im_{4}$. Since

[^1]$\epsilon_{i i} \varepsilon \mathfrak{Y}_{1} \cap \Im_{2} \subseteq \Im_{3}, \Im_{4}$, it follows that $\mathfrak{S}_{3}, \Im_{4}$ have the form $\mathfrak{Y}_{3}=M\left(d_{k}-d_{i}\right)$, $\mathfrak{\Im}_{4}=M\left(f_{k}-f_{i}\right)$. Moreover $\max \left(d_{k}-d_{i}, f_{k}-f_{i}\right)=\max \left(0, c_{k}-c_{i}\right)$, $(i, k=1,2, \cdots, r)$. This implies $\max \left(d_{k}-d_{i}, f_{k}-f_{i}\right)=0$ if $i \geqq k$, whence $d_{1} \geqq \cdots \geqq d_{r}$ and $f_{1} \geqq \cdots \geqq f_{r}$. On applying the same relation to $i=1, k=r$, we find that either $d_{1}=d_{r}$ or $f_{1}=f_{r}$. In the first case we have $d_{1}=\cdots=d_{r}, f_{1}-f_{i}=c_{1}-c_{i}, \quad(i=1,2, \cdots, r)$, whence $\mathfrak{Y}_{1}=\mathfrak{Y}_{3}, \mathfrak{Y}_{2}=\Im_{4}$. The second case gives of course $\mathfrak{Y}_{1}=\Im_{4}, \Im_{2}=\mathfrak{Y}_{3}$.

The assertion about the sum follows now from Theorem 2, which is in turn contained in Theorems 3 and 4.
As to Theorem 3 we notice first that if α, β are two regular elements, the ideals $\alpha \mathrm{r} \alpha^{-1}, \beta^{-1}{ }_{8} \beta, \beta^{-1} \mathrm{t} \beta, \beta^{-1} \mathrm{t}^{\prime} \beta$ have the same significance for $\alpha \mathfrak{a} \beta$ and $\alpha \mathfrak{b} \beta$ as the ideals $\mathfrak{r}, \mathfrak{z}, \mathfrak{t}, \mathfrak{t}^{\prime}$ have for \mathfrak{a} and \mathfrak{b}. Hence it is sufficient, by Lemma 3, to consider the case where

$$
\begin{align*}
& \mathfrak{a}=M(0), \quad \mathfrak{b}=M\left(d_{k}-c_{i}\right) ; \\
& c_{1} \geqq c_{2} \geqq \cdots \geqq c_{r}, d_{1} \geqq d_{2} \geqq \cdots \geqq d_{r} . \tag{1}
\end{align*}
$$

Then $\mathfrak{a} \cap \mathfrak{b}=M\left(\max \left(0, d_{k}-c_{i}\right)\right)$ and $\mathfrak{o}=M\left(a_{i k}\right)$ with

$$
\begin{aligned}
a_{i k} & =\max _{j}\left(\max \left(0, d_{j}-c_{i}\right)-\max \left(0, d_{j}-c_{k}\right)\right) \\
& =\left\{\begin{array}{l}
\max \left(0, d_{1}-c_{i}\right)-\max \left(0, d_{1}-c_{k}\right)=f_{k}-f_{i} \text { for } i \geqq k, \\
\max \left(0, d_{r}-c_{i}\right)-\max \left(0, d_{r}-c_{i}\right)=g_{k}-g_{i} \text { for } i \leqq k,
\end{array}\right.
\end{aligned}
$$

where $f_{i}=-\max \left(0, d_{1}-c_{i}\right), g_{i}=-\max \left(0, d_{r}-c_{i}\right)$. Since $f_{k}-f_{i} \geqq$ or $\leqq g_{k}-g_{i}$ according as $i \geqq k$ or $i \leqq k$, we find that 0 is the intersection of the two maximal orders $M\left(f_{k}-f_{i}\right)$ and $M\left(g_{k}-g_{i}\right)$. Further, if we put $\gamma=\sum \epsilon_{i i} P^{-c_{i}}, \delta=\sum \epsilon_{i i} P^{-d_{i}}$, then $\mathfrak{r}=\gamma P^{a} M(0)$ and $\xi=M(0) P^{-a} \delta$, whence $\mathrm{t}=P^{a-d_{r}} M(0), \mathrm{t}^{\prime}=P^{d_{1}-a} M(0)$. From this we can easily verify the precise characterization of \mathfrak{o} given in the theorem.

The part on the sum ($\mathfrak{a}, \mathfrak{b}$) can be shown by a similar computation. And indeed from that computation we obtain the last assertion in the theorem.

Finally, to prove Theorem 4 we observe again that we have only to consider the case where $\mathfrak{a}, \mathfrak{b}$ have the form (1). $\mathfrak{a} \cap \mathfrak{b}=M$ (max (0 , $\left.d_{k}-c_{i}\right),\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right)=M\left(\min \left(0, c_{k}-d_{i}\right)\right)$ because $\mathfrak{b}^{-1}=M\left(c_{k}-d_{i}\right)$, and here we notice that $\max \left(0, d_{k}-c_{i}\right)=-\min \left(0, c_{i}-d_{k}\right)$. The third normal ideal \mathfrak{c} can be expressed as $\mathfrak{c}=\tau^{-1} M(0) \sigma^{-1}$ with regular elements $\sigma=\sum \epsilon_{i k} s_{i k}, \tau=\sum \epsilon_{i k} t_{i k}$. Let $P^{c_{i k}}$ be the exact power of P which divides $s_{i k}, P^{c_{i k}} \| s_{i k}$; if $s_{i k}=0$ we put $c_{i k}=\infty$. Let similarly $P^{d_{i k}} \| t_{i k}$. It is evident that $M\left(a_{i k}\right)$, with a system of rational integers $a_{i k}$, contains $\mathfrak{c}^{-1}=\sigma M(0) \tau$ if and only if

$$
\begin{equation*}
c_{i j}+d_{l k} \geqq a_{i k}, \quad \text { for all } i, j, k, l . \tag{2}
\end{equation*}
$$

Hence, if we show that the same condition is also necessary and sufficient in order that $M\left(-a_{k i}\right) \subseteq c$, then we will be through. But this is also easy to see. For, $\mathrm{c}=\tau^{-1} M(0) \sigma^{-1}$ consists of all $\eta=\sum \epsilon_{i k} y_{i k}$ $=\tau^{-1}\left(\sum \epsilon_{i k} x_{i k}\right) \sigma^{-1}$ with $x_{i k} \varepsilon I$. On taking a pair (j, l) of indices, let us consider those η such that $y_{i k}=0$ for $(i, k) \neq(j, l)$. In other words, we consider the equation $\tau^{-1}\left(\sum \epsilon_{i k} x_{i k}\right) \sigma^{-1}=\epsilon_{j l} y_{j l}$. But this is equivalent to $\sum \epsilon_{i k} x_{i k}=\tau \epsilon_{j l} y_{j l} \sigma$, or

$$
\begin{equation*}
x_{i k}=t_{i j} y_{j l} s_{l k}, \quad i, k=1,2, \cdots, r \tag{3}
\end{equation*}
$$

Suppose now $M\left(-a_{k i}\right) \subseteq$ c. Then (3) with $y_{j l}=P^{-a l i}$ must have a solution $x_{i k} \varepsilon I$. Hence $0 \leqq d_{i j}-a_{l j}+c_{l k}$ (for all i, k). Since (j, l) was an arbitrary pair of indices, we have thus established (2). Assume conversely (2). Then obviously $x_{i k}=t_{i j} P^{-a_{l i}} S_{l k} \varepsilon I$ whence $\epsilon_{j l} P^{-a_{l j}} \boldsymbol{\varepsilon} \mathfrak{c}$ and $M\left(-a_{k i}\right) \cong c$.

A second proof of the last part of Theorem 3 is as follows: We observe first that every ideal \mathfrak{m} in \mathfrak{H} is additively generated by regular elements contained in $\mathfrak{m} .{ }^{6}$ For, if $\xi \varepsilon \mathfrak{m}$ we take a scalar element $a(\varepsilon F)$ in \mathfrak{m} different from all the characteristic roots of the matrix which represents ξ in a faithful representation of \mathfrak{A}. Then $\xi-a(\varepsilon \mathfrak{m})$ is evidently a regular element and $\xi=(\xi-a)+a$. Now, let α be any regular element from the left order of $\mathfrak{a} \cap \mathfrak{b} ; \alpha(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{a} \cap \mathfrak{b}$. Since $\alpha \mathfrak{a}$ and $\alpha \mathfrak{b}$ are normal ideals, we have, from Theorem 4, $\left(\mathfrak{a}^{-1} \alpha^{-1}, \mathfrak{b}^{-1} \alpha^{-1}\right) \supseteq \mathfrak{a}^{-1}$, \mathfrak{b}^{-1} whence $\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right) \alpha^{-1} \supseteq\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right),\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right) \supseteq\left(\mathfrak{a}^{-1}, \mathfrak{b}^{-1}\right) \alpha$. This shows that the left order of $\mathfrak{a} \cap \mathfrak{b}$ is contained in the right order of ($\mathfrak{a}^{-1}, \mathfrak{b}^{-1}$). But the converse can be seen in quite a similar manner.

Remark. The structure of the residue class algebra $\mathfrak{\Im}_{1} \cap \Im_{2} / p\left(\Im_{1} \cap \Im_{2}\right)$ is easy to analyze, but perhaps does not deserve a detailed discussion. We merely note that the algebra is not symmetric, in fact is not weakly symmetric, ${ }^{7}$ except for the trivial case $\left(\Im_{1}\right)_{p}=\left(\Im_{2}\right)_{p}$; this remark may be of some interest in view of a recent paper by R. Brauer. ${ }^{8}$

The Institute for Advanced Study

[^2]
[^0]: ${ }^{1}$ In the following we shall adopt the terminologies used in M. Deuring, Algebren, Ergebnisse der Mathematik, vol. 4, no. 1, 1935.
 ${ }^{2}$ If the algebra is a quaternion algebra, then the converse is also valid. Cf. M. Eichler, Journal für die reine und angewandte Mathematik, vol. 174 (1936), §7.
 ${ }^{3}$ Thus the intersection and the sum are no more normal ideals except for trivial cases; cf. Nakayama, Proceedings of the Imperial Academy of Japan, vol. 12 (1936).

[^1]: ${ }^{4}$ Cf. Nakayama, Japanese Journal of Mathematics, vol. 13 (1937), p. 339.
 ${ }^{5}$ Chevalley, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 10 (1934), p. 87.

[^2]: ${ }^{6}$ We exclude here the trivial case of a finite underlying field F.
 ${ }^{7}$ See Brauer-Nesbitt, Proceedings of the National Academy of Sciences, vol. 23 (1937); Nakayama-Nesbitt, Annals of Mathematics, (2), vol. 39 (1938).
 ${ }^{8}$ Brauer, On modular and p-adic representations of algebras, Proceedings of the National Academy of Sciences, vol. 25 (1939).

