NULLIFYING FUNCTIONS ${ }^{1}$

F. J. MURRAY

Introduction. A function $f(x)$ defined on the unit interval $(0,1)$ will be called nullifying if we can find a set S of $(0,1)$ for which $m(S)=1$, $m(\{f(x) ; x \varepsilon S\})=0$. Examples of homeomorphisms which are nullifying and hence termed singular are well known. ${ }^{2}$ We shall however consider simply the nullifying property itself.

If $f(x)$ is nullifying and $\phi(x)$ is not, one might expect that $\phi(x)+f(x)$ shares with ϕ the property of being not nullifying. But this is not always true as the following example shows. Let.$\alpha_{1} \alpha_{2} \ldots$ denote the dyadic expansion for x, that is, $x=\alpha_{1} / 2+\alpha_{2} / 2^{2}+\cdots$ with $\alpha_{i}=0$ or 1 . Let $v_{1}(x)=. \alpha_{1} 0 \alpha_{3} 0 \cdots$ and $v_{2}(x)=.0 \alpha_{2} 0 \alpha_{4} \cdots$. It is easily verified that both v_{1} and v_{2} are nullifying. Hence $f(x)=1-v_{1}$ is also nullifying. Let $\phi=x$. Then $f+\phi=1-v_{1}+x=1+v_{2}$ is also nullifying.

But this suggests the question: Does there exist a nullifying function $f(x)$ such that $f(x)+\rho x$ is nullifying for every value of ρ ? We construct such a function in the present note.

Our method of proof can be summarized as follows. Considering the set $\{f(x)+\rho x ; x \varepsilon(0,1)\}$, we let $\rho=\cot \theta$. (Note $\theta \neq 0$.) If this set has measure zero, this will still be true if we multiply by $\sin \theta$ and conversely. Thus we may consider the sets $\{x \cos \theta+f(x) \sin \theta ; x \varepsilon(0,1)\}$ for each $\theta \neq 0$ between $-\pi / 2$ and $\pi / 2$. If we consider the line through the origin of inclination θ, we can assign a coordinate to each of its points in the usual manner with positive direction to the right or, in the case of the y axis, upwards. The set $\{x \cos \theta+f(x) \sin \theta ; x \varepsilon(0,1)\}$ is the set of coordinates of the projection onto this line of the graph of $f(x)$. Thus it suffices to find a function $f(x)$ which is such that the projection of its graph onto any line not parallel to the x axis is of measure zero. We proceed to find the graph of such a function by an intersection process on sets in the plane. This process is described in detail in what follows.

A more general question is: Given $F(x, y, \rho)$, under what circumstances can we find a function $f(x)$ such that $F(x, f(x), \rho)$ is nullifying in x for every value of ρ ? It is comparatively easy to abstract the properties of $F=y+\rho x$ which are essential to the present discussion, and these will prove sufficient to obtain an answer to the question.

[^0]However the writer hopes to obtain a more penetrating analysis of this subject soon. The writer will also consider the more general question of obtaining an $f(x)$ the substitution of which will make nullifying not only one but a set of F 's.

Definition of a G_{s}. Let us divide evenly the unit square of the plane in squares of side $1 / 2^{s}$. The coordinates of the vertices of these squares are dyadic rational, that is, of the form $a / 2^{s}$ for some integer a. Two squares are said to be in the same column if they have the same projection on the x axis. A set of such squares with one and only one (closed) square in each column will be termed ${ }^{3}$ a G_{s}.

Notation. If l_{θ} is the line through the origin with inclination θ and P is any point of the plane, we shall denote by $\pi_{\theta}(P)$ the projection of P onto l_{θ}. If S is a set of points, we denote by $\pi_{\theta}(S)$ the projection of S onto l_{θ}. The linear measure of a linear set S we denote by $\mu(S)$.

Lemma 1. Let m be such that $0 \leqq m \leqq 1$. Let $\epsilon>0$ and a G_{s} be given. Let α be such that $\pi / 2 \geqq \alpha \geqq \pi / 4$ and $\cot \alpha=m$. Then we can find a $G_{s+t} \subset G_{s}$ such that for $0 \leqq \theta \leqq \pi / 2$,

$$
\mu\left(\pi_{\theta}\left(G_{s+t}\right)\right) \leqq\left(1+m^{2}\right)^{1 / 2} \sin |\theta-\alpha|+\epsilon
$$

Proof. Let us consider a square B of G_{s}. Then it is possible to take a line $l^{(1)}$ of slope $-m$, such that for every x in the projection of B on the x axis, we have a point (x, y) in B and on $l^{(1)}$. Let $l^{(1)}$ intersect the left-hand side of B at P_{B} and the right-hand side at Q_{B}.

Let us divide B into squares of side $1 / 2^{s+t}$. Now it is readily seen that for each column of smaller squares in B there is at least one square with an interior point on $l^{(1)}$. (If $m=0$, this is not true, but then we can substitute for "interior point," "interior point or point on the upper side.") Define G_{s+t} so as to contain for each column the lowest such square.

We also take a square of side $1 / 2^{s+t}$, whose upper right-hand vertex is at P_{B}. We denote the lower left-hand end point of this square by P_{B}^{\prime}. Similarly we take a square of side $1 / 2^{s+t}$ whose lower left-hand vertex is Q_{B}, and we denote the upper right-hand vertex by $Q_{B}{ }^{\prime}$.

We are going to consider $\pi_{\theta}\left(G_{s+t}\right)$ and we let $<$ and \leqq refer to the order of the points on l_{θ}, the direction of the greater being to the right of the smaller.

We shall show that if $P \varepsilon G_{s+t}$, and $0 \leqq \theta \leqq \alpha$, then $\pi_{\theta}\left(P_{B}^{\prime}\right) \leqq \pi_{\theta}(P)$.

[^1]For $P_{B}^{\prime}\left(x_{B}^{\prime}, y_{B}^{\prime}\right)$ is the lower left-hand vertex of a square whose upper right-hand vertex alone is on $l^{(1)}$. Now every square C of G_{s+t} contains an interior point which is on $l^{(1)}$ (if $m=0$, confer above). Thus if $l^{(1) \prime}$ is parallel to $l^{(1)}$ and through $P_{B^{\prime}}^{\prime}$, every point $P(x, y)$ of G_{s+t} is above or on $l^{(1) \prime}$. Furthermore $x>x_{B}^{\prime}$.

Let $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ be the intersection of $l^{(1) \prime}$ and the line through P parallel to the y axis. P is above P^{\prime} and hence $\pi_{\theta}(P) \geqq \pi_{\theta}\left(P^{\prime}\right)$. On the other hand $x^{\prime}=x>x_{B}^{\prime}$. Let \bar{l} denote the line through P_{B}^{\prime} perpendicular to l_{θ}. The slope of \bar{l} is more strongly negative than that of $l^{(1) \prime}$. It follows that for $x \geqq x_{B}^{\prime}, l^{(1) \prime}$ is to the right of l and hence $\pi_{\theta}\left(P^{\prime}\right)$ $\geqq \pi_{\theta}\left(P_{B}^{\prime}\right)$. This and the previous result yield $\pi_{\theta}(P) \geqq \pi_{\theta}\left(P_{B}^{\prime}\right)$.

A similar argument will show that $\pi_{\theta}\left(Q_{B}^{\prime}\right) \geqq \pi_{\theta}(P)$.
Thus $\pi_{\theta}\left(P_{B}{ }^{\prime}\right) \leqq \pi_{\theta}(P) \leqq \pi_{\theta}\left(Q_{B}{ }^{\prime}\right)$. This implies that the projection of that part of G_{s+1} which lies in B is contained in the interval $\pi_{\theta}\left(P_{B}^{\prime}\right) \pi_{\theta}\left(Q_{B}^{\prime}\right)$. Now if P_{B} has the coordinates $\left(x_{B}, y_{B}\right)$, then Q_{B} has the coordinates $\left(x_{B}+1 / 2^{s}, y_{B}-m / 2^{s}\right), P_{B}^{\prime}$ has the coordinates $\left(x_{B}-1 / 2^{s+t}, y_{B}-1 / 2^{s+t}\right)$, and $Q_{B}{ }^{\prime}$ has the coordinates $\left(x_{B}+1 / 2^{s}\right.$ $\left.+1 / 2^{s+t}, y_{B}-m / 2^{s}+1 / 2^{s+t}\right)$.

Consider $l_{\theta+\pi / 2}$, the line through the origin perpendicular to l_{θ}. According to a formula of elementary analytic geometry, the directed distance of any point $P(x, y)$ to $l_{\theta+\pi / 2}$ is $x \cos \theta+y \sin \theta$, the directed distance being positive if (x, y) is to the right of $l_{\theta+\pi / 2}$ and negative to the left. This directed distance is not changed if we project P onto l_{θ}, and so $x \cos \theta+y \sin \theta$ represents also the directed distance of $\pi_{\theta}(P)$ from $l_{\theta+\pi / 2}$, or since l_{θ} is perpendicular to $l_{\theta+\pi / 2}$, from the origin O along l_{θ}.

Thus $O \pi_{\theta}\left(P_{B}^{\prime}\right)$ has length $\left(x_{B}-1 / 2^{s+t}\right) \cos \theta+\left(y_{B}-1 / 2^{s+t}\right) \sin \theta$ and $O \pi_{\theta}\left(Q_{B}^{\prime}\right)$ has the length $\left(x_{B}+1 / 2^{s}+1 / 2^{s+t}\right) \cos \theta+\left(y_{B}-m / 2^{s}\right.$ $\left.+1 / 2^{s+t}\right) \sin \theta$. Hence $\pi_{\theta}\left(P_{B}^{\prime}\right) \pi_{\theta}\left(Q_{B}^{\prime}\right)$ has length

$$
\left(1 / 2^{s}+1 / 2^{s+t-1}\right) \cos \theta-\left(m / 2^{s}-1 / 2^{s+t-1}\right) \sin \theta
$$

for $0 \leqq \theta \leqq \alpha$. Thus the projection of that part of G_{s+1} which lies in B has measure not greater than

$$
\begin{aligned}
& 1 / 2^{s}(\cos \theta-m \sin \theta)+1 / 2^{s}\left(1 / 2^{t-1}(\cos \theta+\sin \theta)\right. \\
&<1 / 2^{s}(\cos \theta-m \sin \theta)+1 / 2^{s}\left(1 / 2^{t-2}\right)
\end{aligned}
$$

There are 2^{s} squares like B, and this implies that for $0<\theta \leqq \alpha$, the projection of G_{s+t} has measure not greater than

$$
(\cos \theta-m \sin \theta)+1 / 2^{t-2}=\left(1+m^{2}\right)^{1 / 2} \sin (\alpha-\theta)+1 / 2^{t-2}
$$

A similar argument holds in the case $\alpha<\theta \leqq \pi / 2$, with however the smaller added squares in different positions, and during the argument
certain inequalities are reversed. The corresponding result is that, for $\alpha<\theta \leqq \pi / 2$,

$$
\begin{aligned}
\mu\left(\pi_{\theta}\left(G_{s+t}\right)\right) & <m \sin \theta-\cos \theta+1 / 2^{t-2} \\
& =\left(1+m^{2}\right)^{1 / 2} \sin (\theta-\alpha)+1 / 2^{\imath-2}
\end{aligned}
$$

If t is taken large enough so that $1 / 2^{t-2}<\epsilon$, the final results of the preceding two paragraphs are sufficient to prove our lemma.

Lemma 2. Suppose $m>1$, and that $a G_{s}$ and an $\epsilon>0$ are given. Let α be such that $\pi / 4>\alpha>0, \cot \alpha=m$. Then we can find $a G_{s+t} \subset G_{s}$ such that for $0 \leqq \theta<\pi / 2$,

$$
\mu\left(\pi_{\theta}\left(G_{s+t}\right)\right) \leqq\left(1+m^{2}\right)^{1 / 2} \sin |\theta-\alpha|+\epsilon
$$

Proof. Let B be any square of G_{s}. Let $l^{(1)}, l^{(2)}, \cdots, l^{(k)}$ denote a set of lines of slope $-m$ with the following properties: (a) each $l^{(i)}$ contains an interior point of B; (b) if $P_{B}^{(i)} Q_{B}^{(i)}$ is the line segment $B \cdot l^{(i)}$ (B is closed), $P_{B}^{(1)}$ is on the left side of $B, Q_{B}^{(k)}$ is on the right side of B, and for $i=1,2, \cdots, k-1, P_{B}^{(i+1)}$ is on the upper side of B, $Q_{B}^{(i)}$ is on the lower side of B, and $Q_{B}^{(i)}$ has the same x coordinate as $P_{B}^{(t+1)}$. The existence of such a set of lines is easily shown.

Let the coordinates of $P_{B}^{(i)}$ be $\left(x_{B}^{(i)}, y_{B}^{(i)}\right)$, those of $Q_{B}^{(i)}$ be $\left(u_{B}^{(i)}, v_{B}^{(i)}\right)$. From the above we see that $x_{B}^{(1)}=a / 2^{s}, y_{B}^{(1)}=b / 2^{s}+\rho / 2^{s}$ where $0<\rho \leqq 1, u_{B}^{(1)}=a / 2^{s}+\rho / m \cdot 2^{s}, u_{B}^{(2)}=a / 2^{s}+(\rho+1) / m \cdot 2^{s}$, and in general $u_{B}^{(t)}=a / 2^{s}+(\rho+i-1) / 2^{s} \cdot m$, for $i=1,2, \cdots, k-1$, while $u_{B}^{(k)}=(a+1) / 2^{s}$. From this it follows that

$$
(\rho+k-2) / m \cdot 2^{s}<1 / 2^{s} \leqq(\rho+k-1) / m \cdot 2^{s}
$$

or $(\rho+k-2)<m<\rho+k-1$ or $k-1<m+(1-\rho) \leqq k$. Hence if [m] denotes the largest integer less than or equal to m, then $k=[m],[m]+1$, or $[m]+2$. Thus $k \leqq m+2$.

We next divide the square B of S_{s} into smaller squares of side $1 / 2^{s+t}$. The lines $l^{(1)}, \cdots, l^{(k)}$ have been chosen so that for each x in the projection of B on the x axis, there is at least one $l^{(i)}$ which contains a point (x, y) in B. This can be used to show that for each column of smaller squares in B, there is at least one smaller square which contains a point on some $l^{(i)}$ and interior to B. Define G_{s+t} so as to contain the lowest such square in each column.

For each i, let us consider those squares of G_{s+t} which contain points of $l^{(i)}$. An argument similar to that used in Lemma 1 will show that the projection of this part of G_{s+t} on l_{θ} has measure not greater than

$$
\text { length of } \left.l^{(i)} \cdot B\right) \sin |\theta-\alpha|+1 / 2^{s+t-2}
$$

The sum of the lengths of the $l^{(i)} \cdot B$ is $\left(1 / 2^{s}\right)\left(1+m^{2}\right)^{1 / 2}$ and there are at most $[m]+2$ of them. Thus

$$
\mu\left(\pi_{\theta}\left(G_{s+t} \cdot B\right)\right) \leqq\left(1 / 2^{s}\right)\left(\left(1+m^{2}\right)^{1 / 2} \sin |\theta-\alpha|+([m]+2) / 2^{t-2}\right)
$$

Since there are 2^{s} such squares B, we have

$$
\mu\left(\pi_{\theta}\left(G_{s+t}\right)\right) \leqq\left(1+m^{2}\right)^{1 / 2} \sin |\theta-\alpha|+([m]+2) / 2^{t-2} .
$$

We can take t sufficiently large to obtain our result.
This result is interesting only in the range $0<\theta<2 \alpha$, for outside this range other methods give more effective inequalities.

The argument of Lemmas 1 and 2 can be modified to apply to the case in which m is negative, with the following result.

Lemma 3. Suppose an $m<0, a G_{s}$ and $a n \epsilon>0$ are given. Let α be such that $\cot \alpha=m$ and $-\pi / 2 \leqq \alpha<0$. Then we can find a $G_{s+t} \subset G_{s}$ such that for $-\pi / 2 \leqq \theta<0$,

$$
\mu\left(\pi_{\theta}\left(G_{s+t}\right)\right) \leqq\left(1+m^{2}\right)^{1 / 2} \sin |\theta-\alpha|+\epsilon
$$

Lemma 4. Let m_{1} and m_{2} be given with $m_{2}>m_{1} \geqq 0$. Let α_{i} be such that $\pi / 2 \geqq \alpha_{i}>0, \cot \alpha_{i}=m_{i}$ for $i=1,2$. Consider the function

$$
F(\theta)=\min \left(\left(1+m_{2}^{2}\right)^{1 / 2} \sin \left(\theta-\alpha_{2}\right),\left(1+m_{1}^{2}\right)^{1 / 2} \sin \left(\alpha_{1}-\theta\right)\right)
$$

for $\alpha_{2} \leqq \theta \leqq \alpha_{1}$. Then for this range of θ,

$$
F(\theta) \leqq\left(m_{2}-m_{1}\right) / 2\left(m_{1}^{2}+1\right)^{1 / 2}
$$

Proof. For $\alpha_{2} \leqq \theta \leqq \alpha_{1},\left(1+m_{2}^{2}\right)^{1 / 2} \sin \left(\theta-\alpha_{2}\right)$ is increasing while $\left(1+m_{1}\right)^{1 / 2} \sin \left(\alpha_{1}-\theta\right)$ is decreasing. Also we readily see that if η is such that

$$
\left(1+m_{2}^{2}\right)^{1 / 2} \sin \left(\eta-\alpha_{2}\right)=\left(1+m_{1}^{2}\right)^{1 / 2} \sin \left(\alpha_{1}-\eta\right)
$$

then $F(\theta)$ is equal to the first expression for $\alpha_{2} \leqq \theta \leqq \eta$ and to the second expression for $\eta \leqq \theta \leqq \alpha_{1}$. Hence $F(\eta)$ is the maximum value of $F(\theta)$ for the given range of θ.

Expanding $\sin \left(\eta-\alpha_{2}\right)$ and $\sin \left(\alpha_{1}-\eta\right)$, using the definition of α_{i}, collecting terms in $\sin \eta$ and $\cos \eta$ and dividing by $\cos \eta$ yields

$$
\tan \eta=2 /\left(m_{1}+m_{2}\right) .
$$

The value of $F(\eta)$ is then seen to be

$$
\left(m_{2}-m_{1}\right) / 2\left(1+\left(m_{1}+m_{2}\right)^{2} / 4\right)^{1 / 2} \leqq\left(m_{2}-m_{1}\right) / 2\left(1+m_{2}^{2}\right)^{1 / 2}
$$

This and the result of the preceding paragraph prove the lemma.
Consider the sequence $0,1,0,-1,2,3 / 2,1,1 / 2,0,-1 / 2,-1$, $-3 / 2,-2,4,15 / 4, \cdots, 1 / 4,0,-1 / 4, \cdots,-15 / 4,-4, \cdots$ We
denote the i th term in this sequence by m_{i}. Notice that the terms of this sequence can be grouped so that the first group contains 1 , the second group 3, the third group 9, and the k th group $2^{2 k-3}+1$. The maximum value in the k th group is 2^{k-2} and the difference between any two adjacent terms in this group is $1 / 2^{k-2}$.

Let $\left\{\epsilon_{i}\right\}$ denote the sequence such that if i is a subscript of the k th group of the preceding paragraph, then $\epsilon_{i}=1 / 2^{k}$. Let $G^{(0)}=G_{0}$, the unit square itself, and $G^{(i)}$ be defined as the G_{s+t}, which results when either Lemma 1,2 , or 3 (depending on m_{i}) is applied to $G^{(i-1)}$, m_{i} and ϵ_{i}.

Lemma 5. Let $G^{(i)}$ be as above. Let θ be such that $\pi / 2 \geqq \theta>0$. Then $\lim _{i \rightarrow \infty} \mu\left(\pi_{\theta}\left(G^{(i)}\right)\right)=0$.

Proof. Let $\epsilon>0$ be given. Take k such that $\epsilon / 2>1 / 2^{k-1}$ and $2^{k-2}>\cot \theta$. Then we can find an m_{i} in the k th group such that $m_{i}>0$ and $m_{i} \geqq \cot \theta>m_{i+1}$.

Now since $G^{(i)} \supset G^{(i+1)}$, we have $\pi_{\theta}\left(G^{(i)}\right) \supset \pi_{\theta}\left(G^{(i+1)}\right)$ and $\mu\left(\pi_{\theta}\left(G^{(i)}\right)\right)$ $\geqq \mu\left(\pi_{\theta}\left(G^{(i+1)}\right)\right)$. Thus $\mu\left(\pi_{\theta}\left(G^{(i+1)}\right)\right)$ is subject to the inequality which Lemmas 1 and 2 impose upon $\mu\left(\pi_{\theta}\left(G^{(i)}\right)\right)$. Thus

$$
\begin{array}{r}
\mu\left(\pi_{\theta}\left(G^{(i+1)}\right)\right) \leqq \min \left[\left(1+m_{i}^{2}\right)^{1 / 2} \sin \left|\theta-\alpha_{i}\right|,\left(1+m_{i+1}^{2}\right)^{1 / 2}\right. \\
\left.\cdot \sin \left|\theta-\alpha_{i+1}\right|\right]+\epsilon_{i}, \quad\left(\cot \alpha_{i}=m_{i}\right)
\end{array}
$$

Since $\alpha_{i} \leqq \theta \leqq \alpha_{i+1}$, Lemma 4 yields

$$
\mu\left(\pi_{\theta}\left(G^{(i+1)}\right)\right) \leqq\left(m_{i}-m_{i+1}\right) / 2\left(1+m_{i+1}^{2}\right)^{1 / 2}+\epsilon_{i}<1 / 2^{k-1}+1 / 2^{k}<\epsilon .
$$

Also if $j \geqq i+1, G^{(j)} \subset G^{(i+1)}$, and we obtain

$$
0<\mu\left(\pi_{\theta}\left(G^{(j)}\right)\right) \leqq \mu\left(\pi_{\theta}\left(G^{(i+1)}\right)\right)<\epsilon
$$

Thus we have shown that given an $\epsilon>0$, we can find an i such that for $j>i$ this equation holds. The lemma is now proved.

Lemma 6. Let $G^{(i)}$ be as in Lemma 5. Let $G=\prod G^{(i)}$. Then G is a non-empty closed set such that if $0<\theta \leqq \pi / 2$, then $\mu\left(\pi_{\theta}(G)\right)=0$.

Proof. Since the $G^{(i)}$'s form a decreasing sequence of closed sets, their intersection is a non-empty closed set. Since $G \subset G^{(i)}$, $0 \leqq \mu\left(\pi_{\theta}(G)\right) \leqq \mu\left(\pi_{\theta}\left(G^{(i)}\right)\right)$. Thus Lemma 5 now implies $\mu\left(\pi_{\theta}(G)\right)=0$.

Results similar to those of Lemmas 5 and 6 hold for $0>\theta>-\pi / 2$. The method of obtaining them should be clear from the preceding discussion and we merely state the final result as follows.

Lemma 7. If G is as in Lemma 6, then for $0>\theta>-\pi / 2, \mu\left(\pi_{\theta}(G)\right)=0$.
Lemma 8. G is the graph of a function $y=f(x)$.

Proof. For $0 \leqq a \leqq 1$, let p_{a} denote the line $x=a$. Then the sets $p_{a} \cdot G^{(i)}$ form a decreasing sequence of closed intervals on p_{a}, with one and only one point (a, b) in common. Thus $p_{a} \cdot G$ consists of one and only one point (a, b) and b is a function of a.

Now, as we have pointed out in the proof of Lemma 1, for any point $P(x, y), x \cos \theta+y \sin \theta$ is the directed distance of $\pi_{\theta}(P)$ along l_{θ} from the origin. Using Lemmas 6, 7, and 8, we obtain that for $\pi / 2 \geqq \theta>0$ or $0>\theta>-\pi / 2$,

$$
\begin{aligned}
0 & =\mu\left(\pi_{\theta}(G)\right)=\mu(\{x \cos \theta+y \sin \theta ;(x, y) \varepsilon G\}) \\
& =\mu(\{x \cos \theta+f(x) \sin \theta ; 0 \leqq x \leqq 1\}) \\
& =|\sin \theta| \mu(\{x \cot \theta+f(x) ; 0 \leqq x \leqq 1\}) .
\end{aligned}
$$

Letting $\rho=\cot \theta$ we obtain that for every value of ρ,

$$
\mu(\{f(x)+\rho x ; 0 \leqq x \leqq 1\})=0 .
$$

Since $f(x)$ is the limit of step functions, it is measurable, and we have proved the following theorem.

Theorem. There exists a measurable function $f(x)$ defined for $0 \leqq x \leqq 1$, such that for every value of $\rho, f(x)+\rho x$ is nullifying.

Columbia University

[^0]: ${ }^{1}$ Presented to the Society, December 29, 1939.
 ${ }^{2}$ Cf. E. R. van Kampen and Aurel Wintner, On a singular monotone function, Journal of the London Mathematical Society, vol. 12 (1937), pp. 243-244. References to preceding examples are given in this paper.

[^1]: ${ }^{3}$ We shall ignore the logical distinction between a set of squares and the corresponding set of points. G_{s} denotes either a (closed) set of points or a set of squares according to the context.

