
SINGULAR POINT PROBLEMS IN THE THEORY OF 
LINEAR DIFFERENTIAL EQUATIONSf 

W. J. TRJITZINSKY 

1. Introduction. The discussion of the subject indicated in the title 
is not intended in any way to be encyclopaedic. The object of this 
address relates to the general problems of determining the character 
of solutions of equations 

(A) Ln(y) s a0(x)y^ + ax{x)y^-^ + • • • + an^{x)y^ + an(x)y = 0, 

(B) Ln(x, X; y) s a0(x, X)y<n> + ax{x, X)y^~^ + • • • + an{x, \)y = 0. 

The di(x) in (A) are assumed to be analytic for \x\ è p , (x?* <*>), be­
ing representable by convergent series of the form 

(1.1) cn(x) = xniip[aito + ai}xx~llv + ait2x-2l*> + • • • ] , 

fii, p integers; p > 0; i — 0, • • • , n; \ x | ^ p, 

or they are supposed to be merely asymptotic to such possibly diver­
gent series, for x in a suitable region extending to infinity. The 
di(x, X) in (B) are assumed to be indefinitely differentiable in x, for 
x on a closed real interval (a, &), and analytic in X for |X| ^ p > 0 , 
(X?^ °O ; X is a parameter), being representable by convergent series 
of the form 

00 

(1.2) ai(x, X) = \ni^aitV(x)\-p
} fii integers; i = 0, • • • , n; 

ai%v(x) indefinitely differentiable on (a, b); a ^ x ^ b\ | X | ^ p, 

or they are supposed to be asymptotic to a finite number of terms, 
or to infinitely many terms, to such possibly divergent series, when 
x is on (a, b) and the parameter X is in a suitable region R extend­
ing to infinity. 

The investigation for the problems (A) and (B) (relating to equa­
tions (A) and (B), respectively) has the purpose of establishing the 
character of solutions in the complex neighborhood of the singular 
point of the equation under consideration. In problem (A) the singu­
lar point is at x = <*>. In problem (B) the singular point considered 
is at X = oo, (x in (a, b)). 

f An address delivered by invitation of the Program Committee at the Iowa City 
Meeting of the Society, November 26, 1937. 
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These problems are important, in part, because many significant 
classical instances of differential equations occur as particular cases 
of (A) and (B); on the other hand, a satisfactory theory of problems 
(A) and (B) is a very desirable prerequisite for the analytic theories 
of certain highly important non-linear differential systems. 

We use the term asymptotic relation in the following sense. If R is a 
region extending to infinity in the complex x plane it will be said that 
a function a(x), defined in R, is asymptotic to a{x) =a0+aix~1,p+ • • • 
for x in R (that is, a(x)~a(x) in R) if 

(1.3) a(x) = a,, + • • • + flm-i*"^1^ + Pm(%)*rmi*, 

| pm(x) | g /3mln R; m = 1, 2, • • • . 

If R is a region extending to infinity in the complex X plane, we shall 
say that a function a(x, X), defined for x in (a, b) and X in R, is asymp­
totic to a(x, X) =a0(#)+ai(#)X~1 / 3 ,+ • • , (integer p>0), in i£ (with 
x on (a, 6)) if the ap(x) are continuous on (a, 6) (which interval is 
taken closed) and 

(1.4) a(x, X) = a0(x) + • • • + a1B-i(*)X-<" |-1)^ + j8w(a?, X)X— /*, 

| j8m(#,X) | ^/3OT;jömindependent of », X;m= 1, 2, • • • ; xin (a, b);\inR. 

Unless the contrary is stated the designation 

(1.5) a(x) ~ a(x) in R, a(x, X) ~ a(x, X), » in (a, 6) ; X in R, 

will indicate asymptotic relations in the sense that (1.3), (1.4) hold in 
the respective cases. Such asymptotic relations will be termed ordi­
nary or to infinitely many terms. When (1.3) (or (1.4)) is asserted only 
for m = 1, 2, • • • , wo, then we shall write 

(1.5a) a(x)~a(x)'mR (or a(x,X) ~ a(x,X), xin (a, b); Xini£), 

the symbol ^ denoting an asymptotic relation "to m0 terms." 
In consequence of a paper by E. Fabry f it can be asserted that the 

formal equation (A*) obtained from (A) by replacing the ai(x) by the 
corresponding series ai(x) (of (1.1))J has n formally linearly inde­
pendent solutions 

(1.6) Si(x) = eQi(x)xri<n(x), i = 1, • • • , n, 

where the Qi(x) are polynomials in xllki and 

t E. Fabry, Sur les intégrales des équations différentielles linéaires à coefficients 
rationnels, Thèse, 1885, Paris. 

% It is assumed that in <XQ(X) not all the coefficients are zero. This hypothesis is 
made for convenience and has no essential significance. 
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( 1 . 6 a ) <Ii(x) = <Ti°(%) + <Til(x) log X + • • • + (Tim(x) logm* X, 

(1.6b) <rp(x) = <r̂ f° + (jV»1*-1'** + • • • , 

7 = 0, • • • , tm; i = 1, • • • , n\ 

here wt-, ki are integers ( m ^ O ; &,-(>0) is an integral multiple of £), 
and the series (1.6b) may diverge (for all x). 

In consequence of the work of P. Noaillonf the formal equation 
(B*), obtained from (B) by replacing the #»•(#, X) by the correspond­
ing series a»(#, X) (of (1.2)), possesses a full set of n formal (in general 
divergent) series solutions 

(1.7) Si(x, X) = eQ^'^aiCx, X), i = 1, • • • , », 

where the Qi(x, X) are polynomials in \1/ki (integer ki>Q) and 

oo 

(1.7a) <n(x, X) = J2-<riA*)*~v,ki9 i = 1, - - - ,n, 

the coefficients in Qi(x, X) and in the series <Ti(x, X) being functions 
indefinitely differentiate with respect to x for x in a suitable interval 
(a, 6)4 

The essential features of an analytic theory of equations (A) and 
(B) relate to the following questions. 

I. If the a,i(x) (or a,-(#, X)) are representable by convergent series 
<Xi(x) of (1.1) (or series «»•(#, X) of (1.2)), under what conditions do 
the formal series solutions (all or any) converge, thus representing 
"actual" solutions of (A) (or of (B))? 

II . If the di(x) (or af-(#, X)) are represen table by convergent series 
of the type stated above, under what conditions are the formal solu­
tions, all or any, (1.6) (or (1.7)), though possibly divergent, sum-
mable to "actual" solutions? 

With respect to II a method which is particularly potent is that 
involving what essentially amounts to exponential summability— 
to be precise, Laplace integrals leading to expressions containing con­
vergent factorial series.§ 

t P. Noàillon, Développements asymptotiques dans les équations différentielles 
linéaires à paramètre variable, Mémoires de la Société des Sciences de Liège, (3), vol. 
9 (1912), 197 pages. 

% Possibly merely a sub-interval of the interval originally so denoted. 
§ Developments of this type rest on important results obtained by N. E. Nörlund 

in the theory of factorial series (Nörlund applies these methods to difference equa­
tions); cf. N. E. Nörlund, Acta Mathematica, vol. 37 (1914), pp. 327-387; Leçons sur 
les Equations Linéaires aux Différences Finies, Paris, 1929. References to J. Horn's 
applications of methods mentioned in II to differential equations will be given later. 
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III. If the ai(x) (or a^x, X)) are representable as specified in I 
and II, but the methods suggested therein (that is, convergence and 
summability) fail, what can be done, in so far as "actual" solutions 
are concerned, by asymptotic methods? When the a»(x) (or ai(x, X)) 
are merely asymptotic to series of the type specified above, questions 
I, II lose their significance and only question III remains. 

This address relates mainly to my own work regarding questions II 
and I l l . t Of my three papers, just referred to, (Ti) and (T2) relate to 
question III for the problems (A) and (B), respectively. (T3) relates 
to question II f or the problem (A). J From a certain point of view 
(Ti), (T2), (T3) give a complete treatment of certain essential aspects 
of the theory of equations (A) and (B). The most relevant predeces­
sors to these papers are certain contributions of a number of mathe­
maticians. Of the predecessors to (Ti) (relating to question III for 
the problem (A)), highly significant are papers of H. Poincaré§ and 
G. D. Birkhoff.11 With respect to (T2) (relating to question III for 
the problem (B)) should be mentioned important developments due 
to G. D. Birkhoff,If as well as certain contributions due to Noaillon 
(already referred to) and to J. D. Tamarkin.** In connection with 
(T3) (relating to question II for (A)) of the relevant predecessors we 
shall mention J. Horn . t t 

2. Problem (A) (asymptotic methods). H. Poincaré treats equation 

t W. J. Trjitzinsky, Analytic theory of linear differential equations, Acta Mathe­
matica, vol. 62 (1934), pp. 167-226. Referred to as (Ti). 

W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, 
Acta Mathematica, vol. 67 (1936), pp. 1-50. Referred to as (T2). 

W. J. Trjitzinsky, Laplace integrals and factorial series in the theory of linear 
differential and linear difference equations, Transactions of this Society, vol. 37 (1935), 
pp. 80-146. Referred to as (T3). 

t For the problem (B) summability methods, on the whole, appear t o be rather 
ineffective. 

§ H. Poincaré, American Journal of Mathematics, vol. 7 (1885), pp. 203-258. 
|| G. D. Birkhoff, Transactions of this Society, vol. 10 (1909), pp. 436-470. 
H G. D. Birkhoff, On the asymptotic character of solutions of certain linear differen­

tial equations, Transactions of this Society, vol. 9 (1908), pp. 219-231; also cf. ibid., 
vol. 9 (1908), pp. 373-395; also see G. D. Birkhoff and R. E . Langer, The boundary 
problems and developments . . . , Proceedings of the American Academy of Arts and 
Sciences, vol. 58 (1923), pp. 51-128. 

** J. D. Tamarkin, Some general problems of the theory of ordinary linear differential 
equations . . . , Mathematische Zeitschrift, vol. 27 (1927), pp. 1-54. 

f t Some of Horn's work is as follows: Integration linearer Differentialgleichungen 
. . . , Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 24 (1915), 
pp. 309-329; Laplacesche Integrale . . . , Mathematische Zeitschrift, vol. 21 (1924), 
pp. 85-95. 
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(A), (§1) of rank one, with the roots of the characteristic equation 
distinct, f G. D. BirkhofFs work relates to equation (A), (§1) of any 
rank, the roots of the characteristic equation being distinct. J The 
methods of these two writers are not readily extensible to the general 
problem (A). 

In (Ti), with the aid of "iterations " factorizations, and appropriate 
integrations, is established a fundamental existence theorem for the 
general problem (A). To state this theorem conveniently a number of 
definitions will be introduced. 

DEFINITION 1. Generically {x} ff, (q an integer ^ 0 ) , will denote an 
expression 

Po(ff) + PiO) log x + • • • + pQ0)log* x, 

where the p3-(x) are series, possibly divergent, of the form 

(2.1) p/,o + pj,i%~llk + pj,2%~2lk + • • • , k a positive integer. 

DEFINITION 2. A curve B will be said to be regular if it is simple 
and extends to infinity where it possesses a unique limiting direc­
tion.! 

DEFINITION 3. A region R will be said to be regular if it is closed, 
extends to infinity, and is such that if x is in R, then \x\ ^ f i > 0 ; also 
the boundary of R is to be simple and is to consist of an arc y of the 
circle \x\ —r\ and of two regular curves extending from different 
extremities of 7. Generically R(6i, 62) will designate a regular region 
for which the two regular curves (forming part of the boundary) have 
limiting directions 0X and 02, respectively. The number |0i—02| is to 
be termed the opening of R. 

DEFINITION 4. The symbol [x]q will denote a function of the form 
po(x) + - - - +pq(x) \ogqx where the p3(x) are functions, analytic for 
XT^ 00 in a regular region R, such that 

t When (A) is written in a suitable form one then has the Q%(x) in (1.6) of the 
form fax, no logarithms will be present in (1.6a), and the series (1.6b) will be in 
powers of x~l. 

% With (A) taken in a suitable form, the Qi(x) of (1.6) will be polynomials in x (of 
degree which may be higher than the first), no logarithms will enter in (1.6a), and the 
series (1.6b) will be in powers of x"1. The coefficients of the leading powers in the 
Qi(x) are expressible in terms of the roots of the characteristic equation; the latter 
is of the form E(g) =0 where E(g) is a polynomial of degree w, the coefficients of the 
various powers of g being certain ones of the initial coefficients from the series (1.1). 

§ That is, if the equation of the curve is 6—f(r), (6=angle of x\ r = |# | ) , then 
lim 6 (as r—• 00 ) exists and is unique. 



214 W. J. TRJITZINSKY [April 

pj(%) ~ Pi(%) in R, 

the Pi(x) being series of the form (2.1). 

One has [ 4 ^ { x } a , x in R."\ 
It is a well known fact that when the coefficients in (A) are repre-

sentable by convergent series (1.1), while in the formal solutions the 
polynomials Qi(x), (i = 1, • • • , n), are all identically zero, the formal 
series (1.6) will all converge (for \x\ ^r'; r' sufficiently great) and 
will thus represent a full set of "actual" solutions of (A). The equa­
tion (A) is then said to be of Fuchsian type. 

We let Bi,j denote a regular curve along which 

(2.2) R(Qi(x)-Qj(*)) = 0. 

Such curves will be defined only when Qi(x)j£Qj(x). Let 

(2.3) Ri, i?2, • • • , RN 

be regular regions separated by the Bitj curves (formed for all admis­
sible pairs of values i, j) in such a way that interior to any such region 
there is no Bit]- curve. Consider a particular region Rk of the set (2.3). 
I t has the form.R(dk,i, # M ) , where 0 ,̂1 ^0^,2. The regular curves form­
ing part of the boundary of Rk and possessing at infinity the limiting 
directions dk,i and 0&f2 will be designated as Bh,i and Bk,r, respectively. 

In view of the fundamental existence theorem given in (Ti) the 
following can be asserted for any fixed k, (l^k^N). 

If 0k,i = 0k,2, the equation (A) has a full set of solutions 

yi(x), i = 1, • • • , w, 

whose elements yi(x) are analytic in Rk (XT* <*>), while 

(2.4) y{(x) ~ Si(x), in Rk] i = 1, • • • , », 

the series Si(x) being given by (1.6); that is} 

yi(x) = eQiiz)xri[x]QV in RJc; i = 1, • • • , n. 

If 0k,i<0k,2, there exist regular overlapping subregions of Rkl 

(2.5) rRk — R(dk,i, dk,2), iRk — R(Qk,i, 0^,2), 

whose boundaries contain Bk,i and Bk,r, respectively.% So that there 
exist two full sets of "actual" solutions, 

f In the sense indicated in the definitions. 
{ The other regular curve, which forms part of the boundary of rRk (or iRk)f is 

interior to Rk and has at infinity the limiting direction of B'kr (or B'u). The precise 
details are given in (Ti). 
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(2.5a) ryi(oc), (i = 1, • • • , n); iyi(%), i = 1, • • • , n, 

such that 

(2.5b) rjiioc) ~ Si(x), i = 1, • • • , n; in rRk, 

(2.5c) iy%(%) ~ Si(x), i = 1, • • • , n\ in iRk\ 

that is, the functions (2.5a) are of the f or m (exp Q%{x))xri[x\qv (i = l, 
- - - , n), in the specified regions. 

Results of the above description can be stated for each one of the 
regions (2.3). If we take a particular set of solutions relating, let us 
say, to 2?i, the asymptotic behaviour of these solutions can be studied 
in the complete neighborhood of x= <*> (for details, cf. (Ti)).f 

Under certain conditions results of the stated kind will hold in 
more extensive regions (see (Ti), pp. 216-218). However, it is not to 
be expected that in general one could replace rRk and iRk (the regions in­
volved in (2.5b) and (2.5c)) by their sum Rk and assert existence of a 
fullsetof "actual"solutionsyi(x)y(i = l, • • • ,n)yforwhichyi(x)~Si(x)} 

(i = l, • • • , n), throughout Rk. In other words, no essential improve­
ment is to be expected in this direction. The paper (Ti) discusses also 
some converse problems, including the formulation of the correspond­
ing Riemann problem. 

3. Problem (B) (asymptotic methods). I t is convenient to write 
equation (B) of §1 in the form 

n 

(BO L(x, X; y) = ]T) X#<w-*>an_fc(a;, \)y^ = 0, integer H ^ O , 
/fe=0 

where the an-k(x> X) are either equal to convergent series of the form 
oo 

(3.1) an-k(%, X) = Z ) «n-fc,v(^)X-v, k = 0, 1, • • • , » , 
i/=0 

or are asymptotic (as stated subsequent to (1.2)) to such possibly 
divergent series, respectively.! We choose the integer H( ̂ 0 ) as small 
as possible. In §1 it has been assumed that in the series ao(x, X) not all 
the coefficients are identically zero. Hence, with (a, b) properly 
chosen, we now may suppose that ao(x, X) = l. 

If H = 0, while #«_&(x, X)= «„_&(#, X) (the latter series being con­
vergent for x in (a, b) and for |X| s^r 'X)) , we have an analog to 

f In general, of course, there is change of asymptotic form from curve to curve, while 
in the neighborhood of some of the curves the asymptotic form, figuratively speaking, 
may become "blurred." 

% The cin-k,v(%) are of the same description as the aitV(x) in (1.2). 
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the Fuchsian theory. As established by H. Poincaré there exists 
then a full set of solutions analytic in X at X = oo (provided the ini­
tial conditions are of the same character). 

The characteristic equation for (B') is 

n 

(3.2) E(x-, s) ^ £ *n-k,o(x)gk = 0. 

Let gi = gi(x), ( i = l , • • • , n), be its roots. The interval (#, b) will be 
so chosen that the following will be true for any pair of functions 
gi(x), gj(x), (*Vj). Either g{(x) = gj(x) for all x in (a, b) or g{(x) 9^g3(x) 
for every x in (a, &).f With a proper choice of (a, &), then, (B')$ will 
possess a full set of formal solutions (1.7). The latter involve func­
tions Qi(x, X), (i = l, • • • , n). Now, Qi(x, X) will be a polynomial in 
\1,ki, (integer ki>0). With the highest power of X displayed, one may 
write 

(3.3) Qi(x,X) = qM*H + ' ' ' î 

here 

(3.3a) qi,o(%) ss gi(x), i = 1, 2, • • • , n, 

where gi(x) is a root of (3.2). 
The number H has to do with what appropriately might be called 

the rank of the equation (B). Whence H will be termed the rank of (B). 
G. D. Birkhoff gave an asymptotic theory, with the essential 

particulars, for the equations (B) of rank unity in the case when the 
roots of the characteristic equation (3.2) are distinct throughout (a, b). 

J. D. Tamarkin developed a theory for equations (B) of any finite 
rank under the assumption that the roots of the characteristic equation 
(3.2) are distinct in (a, b). 

The extension of the methods of these writers to the treatment of 
the more general problem, now under consideration, cannot be con­
veniently carried out. 

In (T2) we develop the theory of the general problem (B) (of any finite 
rank H, admitting existence of multiple roots of (3.2)). The funda­
mental existence theorem of (T2) is established with the aid of a 
limiting process called "iterations" akin to an analogous process 
which we introduced in (Ti), suitable integrations, and factorizations. 

The existence theorem of (T2) asserts in particular the following : 

t (a, b) is closed. 
t Rather, the equation (B;*) obtained by replacing the an-k(x, X) in (B') by the 

series an-k(x, X), respectively. 
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Let the B}'J designate curves in the complex \-plane, extending to 
infinity, along which 

(3.4) RQ?{x, X) RQ?{x,\).\ 

There exist subintervals of (a, b) such that, when x is restricted to one of 
them, there exists a regular region R in the \-plane so that there are 
no curves B]j, (i, j= 1, • • • , n), interior to R. Let {a', b!) denote any 
particular subinterval of the kind referred to above. As a matter of nota­
tion, entailing no loss of generality, one may write 

RQi\x, X) ̂  RQ?\x, X) è • • • ^ RQn\x, X), x in {af, bf) ;\in R. 

Let a be an integer, however large. The equation (B) will possess a 
full set of "actual" solutions, a^»(X, x), (i = l, • • • , n), with elements 
analytic in X, (X^ <*> ), and continuous in xfor x in {a', b') and \inR\ 
moreover, 

(3.5) «^(X, x) ~ s*(X, x), i = 1, • • • , n\ x in (a', V)\ \in R, 

where the SiÇk, x) are the series of (1.7). 

For the problem under consideration regions R and full sets of 
"actual" solutions, of the above description, will certainly exist at least 
for some sufficiently small interval (a', bf). 

Associated with the equation (B') is the system, which in matrix 
notation may be written as 

(B'O 

where 

F<«(*, X) = Y(x, \)D(x, X), F(*, X) = (yu(x, X)), J 

D(x, X) = 

( 0, 0, • • • , - \Hnan(x, X) 

1, 0, • • • , - X ^ - ^ n - l ^ , X) 

i 0, 0, • • • , - \H<n(x, X) 

= (du(x,\)). 

If {yi,j{x, X)) is a matrix solution of (B'), then (yi,3{x, X)) 

f Differentiation is with respect to x. Whenever Qi(x,X)^Qj(x,\) the convention 
will be that there are no corresponding B{£ curves. Sufficiently far from the origin 
the Btf curves are simple; moreover, at infinity they will possess limiting direc­
tions. A particular curve (3.4) will depend on x. As x varies in the interval this curve 
may vary; the angle of the sector within which this variation takes place can be 
made as small as desired by a suitable choice of the interval for x. 

t (y%,i(x> X)) is a matrix of n2 elements, with ytj(xt X) in the *th row and jth col­
umn (i, 7 = 1, • • • , »). 

file:///-plane
file:///-plane
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= (yij,r1)(x> ^))> a n d the yi,i(x, X), ( i = l , • • • , w), will constitute a 
full set of solutions of (B7). If theyi(x>X) (=3>*\i(x, X); i = l , • • • , w) 
form a full set of solutions of (B')> the matrix Y{x1 X) = (y¥~1) (#> X)) 
will satisfy (B") . More generally, there exists a type of reciprocal 
relationship between a matrix system 

(B'") F<»(*, X) = 7(*, X)i4(a, X), 4(* , X) = (ou(x, X)), 

where the a»,j(#, X), (i,j = l, • • • , w), are functions of the same type 
as the #*(x, X) in (B), (§l) , t and a single equation (B). The system 
(B , / 7) is satisfied by a formal matrix 5(#, X) = (s{tj(x, X)) = (<r»,/(#, X) 
•exp (),•(#, X)), where the series <Ti,j(xt X), (i, 7 = 1, • • • , n), are of the 
same description as the <Ji(x, X) of (1.7a). The elements of a row will 
constitute a formal solution. 

Under conditions and with the notation similar to that under which 
(3.5) has been asserted the following can be stated: 

There exists an "actual" matrix solution of (B ; / / ) , « Y(x, X), such that 

aY(x, y) ~ S ( x , X), x in (a', b')',\ in R. 

Such a matrix can be constructed f or a = 1, 2, • • • . 

Any matrix Z(x, \) = aY~1(a/
1 X)«F(*, X) (or aF"1(& /, A)«F(*, X)) 

will be independent of a and will, of course, satisfy the system (B ; / /)« 
As pointed out in (T2), Z(x, X) will satisfy certain asymptotic relations 
in the ordinary sense% for x on (a', b') and X in R. 

In (T2), pp. 40-44, are also made applications to integro-differ-
ential equations of the form 

b(u, x, \)y(u, \)du, 
a' 

where L is the differential operator of the left member of (B), (§1). 
On the basis of our existence results some applications are also 

made to boundary value problems.§ For the general problem (B), 
however, development of an adequate boundary value theory (lead­
ing to expansions of arbitrary functions) apparently necessitates 

t It is assumed that the determinant \A(x, X)| ^ 0 . This relationship is not 
obvious but is to be expected and is established without much difficulty. 

% Cf. (Tj), P. 33. 
§ A formulation of general boundary value problems, together with a number of 

significant results, is given by J. D. Tamarkin, Mathematische Zeitschrift, loc. cit. 
A treatment of boundary value problems for linear systems, with the parameter 
entering linearly, is due to Birkhoff and Langer, Proceedings of the American Academy 
of Arts and Sciences, loc. cit. 



1938] LINEAR DIFFERENTIAL EQUATIONS 219 

some restrictions with respect to the character of the polynomials 
Qi(x, X), (i = l, • • • , n). Thus, it appears, we would have to assume 
that the various regions for which (B) has solutions of known asymp­
totic form (as implied by the existence theorem of (T2)) abut on 
each other. 

4. Problem (A) (Laplace integrals). The equation (A), (§1), will be 
now assumed to possess coefficients representable by convergent 
series of the form (1.1). By means of a transformation xa = Xi (a 
suitably chosen) the equation (A) is brought to the form 

(A') £(y) • î>-*(*)y<*> = 0, 

where we wrote x without the subscript; here f 
oo 

(4.1) dn-k(x) = 2 3 dn-kfV%-vl*>, integer p > 0; d0)0 T* 0, 

all the series being convergent for \x\ ^r'(>0). The characteristic 
equation of (A') will be 

(4.2) E(p) » I X - J M P * = 0. 

Horn's results,J as stated for (A'), are as follows: 

Under the hypothesis that the roots of the characteristic equation (4.2) 
are distinct, (A') possesses a full set of solutions of the form 

eQi(x)xrirji(x)} i = 1, 2, • • • , n, 

where the Qi(x) are polynomials in x1,p and the rji(x) are of the form 

V 

the rjitV(x), (v = l, • • • , p; i=l, • • • , n), being convergent factorial 
series of the type 

mA*) = Z -, r-̂ —; • 
,-o %\% — y)'''(% — sy) 

Here | 'V | must be sufficiently great and y is the same for all solu­
tions. Moreover, Zy is allowed to have any value except certain ones, 

t p generally will be different from the integer so denoted in (1.1). 
t We state them in a form slightly different from that of Horn. 
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depending on the roots of (4.2).f Formally, solutions (4.2) are com­
patible with the corresponding formal solutions. 

Our treatment of (A') along these lines, as given in (T3)J goes fur­
ther. The pertinent results from (T3) will be forthwith stated. 

In accordance with facts pointed out in §1, equation (A') has a 
full set of formal solutions Si(x)=xrio~i(x) exp Qi(x), (i=l, • • • , n), 
where the o\(x) are of the form (1.6a), and the Q%(x) are polynomials 
in x1,ki, while the coefficients of the powers of log x in the G{(x) are 
power series in x~l,ki (ki integers). I t will be said that Si(x) is normal^ 
when ki = p. When ki — r/p (integer r / > l ) the corresponding formal 
solution Si(x) will be said to be anormal. Consider a root p of (4.2) of 
multiplicity 0 ( ^ 1 ) . If 0 = 1 , the corresponding formal solution will 
be normal and will contain no powers of log x,^ If <j> > 1, the following 
cases may present themselves: 

CASE 1. The (j> polynomials Q%(x) from the formal solutions cor­
responding to the root p of (4.2) are not all identical. 

CASE 2. This is the alternative to the previous case. 
In Case 2 the formal solutions corresponding to the root p are all 

normal. 
The theorem (for differential equations) proved in (T3) can be 

stated as follows : 

Consider a root pi, of multiplicity <ƒ>, of the characteristic equation 
E(p)=0 (see (4.2)) associated with (A7). Assume that with respect to 
this root Case 2 takes place. As a matter of convenience, entailing no loss 
of generality, we may take pi = 0. For every t, not coincident with a value 
of an angle of a non-zero root of E(p) = 0, the following will be true, 

(A') possesses a set of <j> (linearly independent) solutions 
ƒ—l r v 

jj(x) = eQMxrJ2 log* x\ fcW""1 + 2 %(p~p),p 

(4.3) * *A*:ht) i 
s«o x(x — y) • • • (x — sy)J ' 

j = 1, • • • , 0; Q(x) = polynomial in xl!p, 

where \y\ is suitably great and Zy=y=—t; the factorial series in 
(4.3) will all converge in a half-plane 

R(eftx) < - q ( < 0). 

t For a given admissible y the series (4.2b) will converge in a certain half-plane* 
} W. J. Trjitzinsky, Transactions of this Society, loc. cit. 
§ This is the value p involved in (4.1). 
1f This is the case treated by Horn. 
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The implications of this theorem for (A), (§1) are obvious. The $ 
corresponding solutions of (A) will be of the form (4.3), with x re­
placed by a certain power of x; as a consequence the series involved 
in these solutions will converge in certain sectors. 

The above process constitutes, of course, a process of summing the 
corresponding formal series solutions. 

The theorem is of greatest possible completeness in the sense that even 
normal formal series solutions do not always lead to convergent 
factorial series developments, if, corresponding to the multiple root 
in question, the polynomials Qi(x) are not all identical. This point is 
made clear with the aid of the following example. 

The equation 

(4.4) Lz(y) s y(8) + ax-'yW + dx~*y - 0, a ^ 0, d ^ 0, 

is of the form (A'); its characteristic equation has a root, p = 0, of 
multiplicity three. There is a formal solution 

00 

(4.4a) y{%) = ]T yvx~v, y0 = 1, 

where 

?x+i = ?(0)g(l) • • • j(X), g(X) = — — — 
a(\ + 1) 

X(X + 2) 

The power series (4.4a) diverges so fast that exponential summability 
fails, and nothing of the type stated in our theorem will hold in con­
nection with this formal solution.f 

We shall outline very briefly the steps used in deriving the theorem 
referred to above. We apply to (A7) the transformation 

j-i / P \ 

(4.5) y3(x) = «e<*>#'£ loZh x[ AW""1 + Z) a** - 1 0 'WK*) )• 

This yields a differential system 

(4.6) X Z) È ^ . ' t ( * ) i H ^ r 0*0 = g 'V'\x)> 
0=0 fc=0 f~l 

* = 0, • • • J - 1; v = 1, • • • , p, 

where the character of the coefficients is determined in detail ((T3), 
p. 96). On writing t=\t\ el\ we suppose integrals 

f In fact, it appears, as well, that no other method of summation will be applica­
ble in this case. 
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ƒ"• ƒ' 
•̂  o ^ o 

to be extended over the ray (0, oo), of angle J, denoted by I(t), 
and the rectilinear segment (0, t)y respectively. If the variable x 
is so restricted that lim^e'*/"! = 0 (every a > 0 ; /—><*> along I(t)), 
then, as is well known, we have formally 

oo / » oo 

fl(ff) = Z) a*x~s = I a(t)etxdt, 
8 = 1 «^ 0 

where 

â — . à(t) = ]T s,r 

On the basis of these facts Laplace integrals are introduced by means 
of the following transformations (refer to (4.5)) 

/

» 00 

o 

* = 0, • • • J - Uj = 1, • • • , 0; ? = 1, • • • , p. 

This transformation, applied to (4.6), yields a system of integral 
equations 

(4.8) tW~Kt) ='~E t f A ^ ^ r W I ^ r + V^-'©, 
0=0 r=i J o 

A = 0, • • • fj - 1; v = 1, • • • , p. 

The character of the coefficients of this system is specified in (T3), 
Lemma 3 (p. 103). In proving convergence of the formal solutionsf 
**?r/-1W» satisfying (4.8), the method of successive approximations 
(used with success by Horn in his more restricted problem) leads to 
apparently unsurmountable algebraic difficulties. The method pur­
sued in (T3) to overcome this difficulty was to establish a "dominant" 
system of integral equations; that is, a system from the convergence 
of whose formal solutions convergence of a set of solutions of (4.8) 
can be inferred. Such a system, as well as proof of convergence of the 
formal series solutions, is given in (T3), pp. 103-113. 

In order that the integrals (4.7) should lead to convergent factorial 

f Power series in /. 
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series expansions,! in view of certain fundamental developments due 
to N. E. Nörlund,$ it is necessary to prove that 

(4.9) U ^ - K O l <Ce«m, A = 0, 1, • • • J - l;v= 1, • • • , J , 

along every ray t(= Zt) in P 0 (C and g independent of t and | / | , 
positive and sufficiently great). Here Po is the complex /-plane, ex­
cluding a neighborhood of / = 0 and excluding small sectors, each with 
vertex at / = 0, and containing the zeros of do,otn~* +dit0t

n~(f>~1 • • • 
+dw_<E,o = 0§ in their interiors. The inequalities (4.9) have been 
established in (T3), pp. 114-116, following lines somewhat similar to 
those employed by Horn in his proof of analogous inequalities. The 
existence theorem stated in connection with (4.3) is inferred with the 
aid of (4.9). 

5. Some general remarks. In connection with the equation (B), 
(§1) a remaining problem of considerable importance is that regard­
ing the behaviour of solutions in the neighborhood of isolated points 
xo (on some real interval to which x is restricted) at which a number 
of roots gi(x) of the characteristic equation (3.2) coincide. We may 
have two intervals, 

(u, xo), (%o, I), u < XQ < I, 

such that the two full sets of formal solutions, corresponding to these 
intervals, are essentially distinct from each other. Development of a 
comprehensive theory covering this situation is highly desirable. 

Methods of the type of those introduced in (Ti) and (T2) (in par­
ticular, the processes of "iterations") appear to be destined to be of 
utility in many similar problems. || 

In conclusion it would be appropriate to mention that the results 
established in (Ti) and (T2) have found effective application in the 
field of non-linear differential equations.% 
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t And in fact to secure convergence of these integrals. 
% N. E. Nörlund, Leçons sur les Séries d'Interpolation, Paris, 1926, pp . 206-208. 

Also see his theorem on p. 203. 
§ Here ^n-^.o^O. Moreover, by a transformation, xr exp Q(x) is supposed to be re­

duced to unity. 
|| In this connection should be mentioned some significant papers by C. Hurd 

(not yet published) in which such methods were applied to equations with several 
parameters. 

1f W. J. Trjitzinsky, Theory of non-linear singular differential systems, Transactions 
of this Society, vol. 42 (1937), pp. 225-321. 


