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Now for ¢ sufficiently large all the terms within the last paren-
theses except the first are as small as we please. Hence for suffi-
ciently large ¢ the difference in question is positive. From this
contradiction the theorem follows.

In conclusion, we may note as a simple corollary of the above
theorem that if lim,.,|a,|""=1, then limu..|@ni/a.] =1 if
and only if there exists a sequence of real numbers A\, such that
lima.ohe =1 and liMp.o| |@nia| =Nalaa| | " < 1.

THE UNIVERSITY OF MICHIGAN

ON THE COEFFICIENTS OF A TYPICALLY-
REAL FUNCTION*

BY M. S. ROBERTSON}
1. Introduction. It is well known{ that if

(1) f(z) = E anz™

n=0

is regular for |z| =<1, and if E is defined by the formula

2 E = maximum | Rf(z1) — Rf(z2) |,

[z1]=lz2l=

* Presented to the Society, February 23, 1935.

1 National Research Fellow.

t See E. Landau, Archiv der Mathematik und Physik, (3), vol. 11 (1906),
pp. 31-36.
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or, in other words, if E is the oscillation of the real part of
f(2) for all points 2, and 2; on the unit circle, then

2
€) la:|=|f'<0>lé-1;E.

In this paper an analogous result and extensions are obtained
for all the coefficients of any function f(2) regular and typically-
real for |z <1.

DEFINITION. A function f(2), f(0) =0, f'(0)0, regular for
| 2] <R, is said to be typically-real with respect to the circle
|z| =R, if within this circle f(z) is real for, and only for, the
points on the real axis.*

It may be noticed, as W. Rogosinski has pointed out, that
the class of functions regular and univalent in the circle |z| =R
and real on the real axis form a subclass of the class of functions
typically-real with respect to this circle.

2. A Stieltjes Integral Representation for Typically-Real Func-
tions. Let

4) &) =2+ 2 ans, (@ real),
n=2

be regular and typically-real for lz| <1. Then it is knownt that

f(z) can be represented in the form

(5) /@) = fg(z)z
— 2

where g(3) is regular for Izl <1, g(0)=1, Rg(z) >0 for Izl <1.
Further, by the formula of G. Herglotz, we may write
1 T 1 4 e iy

= — — da(f
8(2) 2rd . 1 — 3 o(®)

)

(6)

1 ™1 — 32— 2izsin @

T 2rd . 1= 2zcos0 + 22

da(6),

* See W. Rogosinski, Uber positive harmonische Entwicklungen und typisch-
reelle Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121.

t See W. Rogosinski, loc. cit., p. 99.

} See G. Herglotz, Leipziger Berichte, 1911, pp. 501-511.
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where a(0) is an odd non-decreasing function of 8 in the interval

(—m, ), and where f(2) is real on the real axis, as is also g(2).
Hence

1) = i zda(0)
e wJog 1 — 2zcos6 + z2

*. sin #nf
= —f ( ) da(6).
n—1 Sin 0

L. Fejér has observed* that
(2)
®) re = [12
0

2 n

is univalent and convex in the direction of the imaginary axis
for l z| <1, that is, no straight line parallel to the imaginary axis
can cut the image of the circle | z| =7 (for every r in the interval
0 <7 <1) mapped by the function F(z) in more than two points.
It follows from (7) and (8) by integration that

1 r 1 — ze7%) da(f)
(©) M—%Lm{ .}.-

1 — ze® sin 6

3. The Coefficients of a Typically-Real Function. From (9), since
F(r) is real, we have

da(ﬁ)

1n0

(10) F(r) = —f arg (1 — re™%)

Since the integrand is an increasing function of 7 for every 6,
we have

1 ™ 0)
F(1) = lim F(r) = —f lim arg (1 — re=%) da
(11) r—1 TJo o1 sin 0
1 T r—0
= — - da(9).
2rJy sin @

Similarly we also have

(12) F(=1)=lmF(—r) = —

r—1 2w Jo sin 6

da(0).

* See L. Fejér, Journal of the London Mathematical Society, vol. 8 (1933),
p. 61, footnote.
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These limits are finite or infinite according as the integrals exist
or do not exist. Hence if we define

(13)  E(@ =F() —F(—7) = f ' f_?ldt _ fﬂf(:t) u

-1

then

da(0)
(14) E= lim E(r) = —
r—1 0 sin 0

and is finite whenever this integral exists. However, since F(z)
is convex in the direction of the imaginary axis, and since E(r)
is the length of the segment of the real axis intercepted by the
contour into which lz| =r is mapped by F(z), we have

(15) | RF(21) — RF(z2) | < F(r) — F(= r) = E(7)
for all 2, and 2; on |z| =r. Thus E(r) denotes the oscillation of
the real part of F(z) on |z] =7,

From (4) and (7) we have, by comparing coefficients on both
sides of the equation (7),

1 T sin n6
(16) ay = — - da(9),
o sin@
1 7 |sin n6 1 ™ da(d)
an el s-— — |da(0) = — .
TJg |siné TJo siné

Whenever E is finite we have, by (14) and (17),

2
(18) | a.| < —E, foralln,
™
1 & da(())
(19) : ak|<—fM()
where

1 n
M,(0) = —— in 70 |.
) n+1kz=:1|smn|

However, as T. Gronwall has shown,*

* See T. Gronwall, Transactions of this Society, vol. 13 (1912), pp. 445-
468.
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(20) M.(6) < sinzo = 0.72457 - - -,

where 2o is the positive root of the equation tan (z0/2) =2o.
Further,

(21) lim M,(6) = M(6) < -2—

n-—ro ™

hm-—E Iakl = —1~f lim M, (6) da(®)

now N p=1 n—® sin 6

(22) <21 [0 (—7:)2E.

™ wJg sind

Similarly,
2 sin 2 1.45
(23) ——3 | < ( > E< (——)E
k==1 ™
for all .

Again, if we denote by I',, the expression

| sin 46|
(24) I‘,. = max b ’
8 k=1 k
then we have*
A | 2 201 2
(25) — > =<y <— > —+—
T k=1 k T k=1 k ™
T, 2
(26) lim =
n—e logn

Hence by the method used above in (19) we may show that
n a 2 2 2 2 n 1
en 3ol )+ e
k=1 k ™ ™ k=1 k
e 1 i 2\?
(28) w3 L] (5) =

n—> 00 log n p=1 k ™

1A

Let

* See G. Pélya and G. Szegd, Aufgaben und Lehrsitze aus der Analysis,
vol. 2, 1925, pp. 81 and 274.
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" sin k6
(29) A(n, 0) = 3 '
=1 K

Then the absolute maximum®* of 4 (%, 0) is A(n, w/(n+1)).
Consequently we obtain by the above method

2 T
= ——A(n, >E
T n—+ 1

For n odd the factor 2/7 in (18) cannot be replaced by a
smaller one, since for the function f(z) =2(1+432)~! we have

" oap
Z__

(30) 2

™
|a2n_1| =1, @w,=0, F(z) =arctanz, E = 7

Hence equality is attained by z(1-+32)~! for every odd value of
n. However, one cannot have equality for all #, even and odd,
for a given function of the class under consideration, as this
would contradict the inequality (22).

4. A Class of Odd Typically-Real Functions. Let I denote the
class of odd functions

(31) f(Z) =2 + i b2n+12.'2”+1

n=1

with the properties

(a) f(2) is regular for |z] <1,

(b) f(z) is real on the real axis, that is, bs,41 is real for all #,

(c) f(2) lies inside the jth quadrant whenever z is inside the
jth quadrant for |z| <1, (j=1,2,3,4).

The class of odd functions regular and univalent for |z| <1
and real on the real axis form a subclass of I.

THEOREM. If

J(&) = 2+ 22 banpas®

n=1

belongs to class I, then

baks1

M-
v

I

[\S)

>
i

-
b

|bs] =1, | bons| + | boapa] = 2,

* See G. Pélya and G. Szegb, loc. cit., p. 79.
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ProoF. Let f(re®) =u(r, 8) +v(r, 6).
1 T
(32) bopprr?ntl = —f o(r, 6) sin (2n + 1)6 49,
TJ_r

(33) boppar?ntt

1 T
—f u(r, 6) cos (2n + 1)64d6.
T J

On account of hypotheses (b) and (c) of the definition of class
I we may write

4 /2
(34) bonpir?tHl = — f o(r, 0) sin (2 + 1)8d6,
™ Jo

4 /2
(35) boppar?ntl = —f u(r, 8) cos (2n + 1)64d6,
m Jo

where v(7, ) >0, u(r, ) >0 for 0<0<7/2, r<1. From (34) we
have

8 /2

(36)  bopyrr®mtt — bogpyrint = —f (7, ) cos 2n8 sin §d0,
™ Jo

so that

8 /2
| banyrr?ntl — b2n—lr2”_1l = —f I o(r, 6) sin 0] db
m™Jo

8 /2
= —f o(r, 0) sin 6 do
™Yo
= 2r.
Letting »—1, we have
(37) | b2n—1 - b2n+ll = 2

From (35) we have similarly

| bon_1r2v1 - b2n+1,2n+1[

I\

8 w2
—~f I u(r, 0) cos 2nf cos§ db
™ Jo

(38)

I\

8 /2
——f u(r, 6) cos 0do
™ Jo

2r.

IIA
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Letting r—1 again, we have

(39) | ban—1 + b2n+1l = 2.
Combining (37) and (39) we obtain
(40) | bgns| + | b2nia| = 2, (for all n).

The inequalities (40) were established by a different method
for the subclass of I consisting of odd univalent functions real
on the real axis by J. Dieudonné.* Further, since we havet
n. cos ko

>

(41) B(n,8) =Y. > — 1

k=1

for all #, then

n (b2k+17'2k+1 — b2k__lr2k—-l)

k=1 k
(42) g e
= —f B(n, 0)v(r, 6) sin 0d6 = — 2r,
T Jo
(43) i (bar+1 — bar—1) > _ 2
k=1 k
and similarly
2 (b + b
(44) 3o G F b))
b=1 k
On adding (43) and (44) we obtain also
n b
(45) Py}
=1 k&

THE UNIVERSITY OF CHICAGO

* See J. Dieudonné, Annales de I'Ecole Normale, vol. 48 (1931), p. 318.
t See G. Pélya und G. Szegb, loc. cit., p. 79.



