1934.] VEBLEN ON PROJECTIVE RELATIVITY 191

VEBLEN ON PROJECTIVE RELATIVITY

Projektive Relativititstheorie. By O. Veblen. Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 2, Heft 1. Berlin, Springer, 1933. 6473 pp.

This book by Professor Veblen is a result of a series of lectures given at the
University of Géttingen during the summer of 1932, It deals with that new
aspect of the theory of relativity which is often called projective relativity on
account of its relation to projective geometry. It allows a unified theory of the
gravitational and the electromagnetic field, and, though it is not referred to in
Veblen's book, also offers a possibility of including modern wave mechanics.
Apart from this it throws a new light on such an old theory as classical pro-
jective geometry. The material is mainly taken from papers by the author him-
self and by close collaborators. The exposition is elegant and clear.

The present theory is therefore a result of two series of investigations, one
mathematical and one physical. The mathematical side is the theory of pro-
jective connections, the physical side consists in the many attempts, begun by
H. Weyl in 1918, to define a space-time structure depending not only on gravi-
tational but also on electromagnetic potentials. Projective relativity seems
to offer a rather simple and attractive solution.

The theory of projective connections is a generalization of projective ge-
ometry in the same sense as Riemannian geometry is a generalization of euclid-
ean geometry. It is a theory of manifolds for which ordinary projective rela-
tions exist in the immediate neighborhood of a generating point, these rela-
tions being connected by a law which makes the manifold a “curved” projective
manifold.

This is done in the following way. In a four-dimensional manifold with co-
ordinates x%, =1, 2, 3, 4, there belongs to every point a “tangential space” of
the dx* which can be considered as an affine space. In a Riemannian geometry
of fundamental tensor g;; we have, at every point, a “light cone” gidx*dx’ =0
in the tangential space. We now introduce a non-degenerate quadric of which
this cone is the asymptotic cone, and it is possible to define in each tangential
space a non-euclidean geometry with respect to this quadric. The projective
differential geometry of this kind of relativity is the “curved” generalization
of this geometry.

To master the properties homogeneous coordinates are introduced into the
space of the dx? through the relations

dat = X‘/(‘/’aXa)y ('i =1234a= 0: 1) 2,3, 4);

the ¢, are functions which allow us to write for the hyperplane at infinity the
equation ¢,X*=0. Homogeneous coordinates do not change when they are
multiplied by a factor ¢ of the coordinates (x, x2, &3, x%). With respect to the
transformations

%0 = 4% 4 log p, % = wi(x), (o a function of &1, « - « , 2%)
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we can then define “projective tensors,” for example,

9x” dx”
aﬂ_Gﬂ Py axﬂ (a,5=0: 1»2»3:4)°

From the equations X¢=kdx?, X°=Fk(1 —$idx?), where k is an arbitrary number,
the transformations of the X® can be found:

B _ K
= kaw =E 5% R0 o K( - Gud#) = K(1 — gedef) = = X0,
k Axl k

where K is a proportionality factor.

In the tangential space the equation G,sX*X?=0 determines a quadric,
which can be used for the determination of a non-euclidean metric. The
tensor G, “contains” a projective scalar ¢, a projective vector ¢, and an affine
tensor g;;, according to the formula

Gaﬂ = ¢2(gaﬁ + ¢a¢ﬂ) = ¢2'Yaﬂy
Goo = ¢%,  G18/Goo = YaB, Goa/Goo = .

The gi; and ¢, can be used to determine gravitational and electromagnetic
potentials.

The next task is to relate the local spaces by means of a connection. First
it is shown how classical projective geometry can be obtained. Here exist pre-
ferred coordinate systems Z%, “projective coordinate systems,” connected by
transformation formulas of the kind Z*=p"Zf which are related to the x¢ by
means of the equations Z%=e="f*(x1, %, &3, %). Classical projective geometry
is now characterized by the existence of a family of projective scalars Z = p,4*
with arbitrary constants p,. Elimination of the p, leads to the differential
equations

om0, 2oy,

%3P 9x° 9"
for which the author suggests the name of “differential equations of projective
geometry.” The functions II:B transform under a transformation of the x° x¢
as the parameters of connection of an affine five-dimensional manifold:

e (H., oxP ax' 9%x” )695"
v = \ Yooz o T oo o

The IIg, define a special type of projective connection.

The differential equations for Z are not the most general of their kind,
because they satisfy special integrability conditions. Their curvature tensor
Ra,g,, must vanish. If we discard these integrability conditions, we obtain the
general “curved” projective geometry, also with parameters of connection
H;,. The author defines this in detail, and also shows how the transition to non-
homogeneous coordinates can be made. He then shows how infinitesimal pro-
jective displacements can be determined, where the AZg depend on Ilgg (but not
uniquely):
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It is important to observe that in projective differential geometry connection
(“Zusammenhang”) and displacement (“Uebertragung”) must be separately
treated. The connection determines only under certain circumstances a dis-
placement. There is also a difficulty with the generalization of the notion of
path, as the coordinates X determine a point, not a vector. Paths are here
defined as curves for which points in the tangential space pass by displacement
into themselves.

The projective connection and its displacements can now be made to
depend on G,g. A special case is the non-euclidean geometry of the Cayley type,
which finds extensive description. Generalization to the theory of a general
projective tensor of second order leads to a “generalized theory of conic sec-
tions,” which not only contains a Riemannian geometry, but also contains
non-metrical properties. This means in the physical interpretation that gravi-
tational and electromagnetic elements are possible.

The geometry is now ready for physical interpretation. The “paths” of the
projective displacement defined by Gag become the world lines of an electrical
particle; they also include the geodesic lines of the metric. A variation principle

] f Bg\2dx'dx?dx’dx* = 0,

where B is the curvature scalar belonging to vag and the variation is carried out
with respect to vag with veo =1, gives the field equations for empty space. When
they are split into their affine parts they yield the ordinary field equations of
relativity. The physical theory only uses the gi;, ¢: parts of Gag, not the ¢. The
author remarks that it may be possible to connect this ¢ with the Schrédinger
wave theory.

The last chapter brings a five-dimensional interpretation. A bibliography is
found at the end.

The author has given an exposition of the relations between his theory and
wave mechanics in more recent papers on the Geomeiry of two-component
spinorsand the Geometry of four-component spinors (Proceedings of the National
Academy of Sciences, April 19, 1933, pp. 462-474, 503-517). These papers, to-
gether with the book on projective relativity, present a complete unified field
theory.

Veblen's interpretation of projective relativity has many points in common
with and also certain differences from the similar theory presented by Schouten
and Van Dantzig in several recent papers published in the Zeitschrift fiir
Physik (see also Annals of Mathematics, vol. 34 (1933), p. 271). One of the
chief points of difference between the two theories, which both interpret gravi-
tation, electromagnetism, and wave mechanics, lies in the fact that the latter
authors use a projective connection with a set of five equivalent homogeneous
coordinates, while in Veblen’s interpretation one coordinate, 9, is singled out
from the beginning. Both theories can be made to embrace previous attempts
to construct a “curved” projective geometry and a projective relativity.
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