
i932-] HYPERELLIPTIC FUNCTIONS 895 

ADDITION FORMULAS FOR HYPERELLIPTIC 
FUNCTIONS 

BY W. V. PARKER 

1. Introduction* In a recent paper the writer f discussed the 
Kummer surface associated with the hyperelliptic curve of the 
form 

$2 - . r5 _J_ arA _|_ J r 3 _|_ cr2 _|_ y 

This form for the curve was used by A. L. DixonJ in a paper in 
which he obtained addition formulas for hyperelliptic functions 
with distinct arguments. Dixon emphasizes the unusual sym­
metry of this particular form for the hyperelliptic curve. In the 
present paper duplication formulas are found as well as the 
addition formulas for distinct arguments. The odd functions 
used here differ from those of Dixon and are slightly different 
from the ones ordinarily used. The particular form used here 
seems desirable because of the symmetry. 

2. Distinct Arguments. Consider the fixed hyperelliptic curve, 
II, of genus two, given by the equation 

(1) s2 = f5 + ar4 + brz + cr2 + r, 

and let L be a variable curve of the form 

(2) mos = n0r
z + nir2 + n%r + w3, Wo 9e 0. 

If no^O, H and L intersect in six finite points any four of which 
are sufficient to determine L and hence to determine the 
remaining two points. 

Denote the six points of intersection of H and L by 

(ai, pi), (a2, P2), (ft, ai), (ft, o-2), (71, TI), (72, T2), 

and let 

* This paper is a part of a dissertation written in Brown University, 1931. 
The writer is indebted to A. A. Bennett for many helpful suggestions. 

t This Bulletin, vol. 38 (1932), p. 403. 
t On hyperelliptic f unctions of genus two, Quarterly Journal of Mathematics, 

vol. 36 (1904), p. 1. 
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/

»«i dr fa* dr rai rdr ra* rdr 

7 + J 7' Ui = J ~T + J ~' 
/•0I Jr r?* dr C^1 Ydr r^* rdr 

(3) Vl = J 7 + J 7' v^i —+J T' 
r yi dr çi*dr ry^rdr ry*rdr 

Wl = J 7 + J 7' W2 = J ~T+J T 
We then have by Abel's Theorem* 

Ui + vi + Wi = 0 (mod period), 

^2 + 2̂ + ^2 = 0 (mod period). 

(4) 

Let 
xa ya 

= « i + a 2 , = û f i« 2 , 
' a ' a 

« 2 P l — «1P2 «1 2P2 ~ « 2 2 P l 
?7a = " ~ f f a = 

ai«2(ai — a2) aia2(«i — a2) 

and denote similarly the corresponding expressions in jSi, ft, 
^ï, Ö-2; 7i, 72, Ti, r2. These are all periodic functions of the inte­
grals u\ and u2. We know that xa / /«,and ya/taare even functions! 
and rja and fa are odd functions. The functions x7//7, yy/ty,r]y, fy 

can be expressed rationally in terms of xa, ya, ta, rja, f«, xp, y&, 
h, Vp, f/3- But Xy/ty, yy/ty, rjy, f y are the same functions of (wi, w2) 
as xa/ta, ya/ta, Va, f« are of {ux, u2) a n d ^ / ^ , W^> ^ , ft are of 
(*>i, v2), and since, from (4), 

wi E= — (wi + wi), 

and 
W2 = — («2 + »2), 

these relations give us expressions for the functions of (ui+vi, 
u2+v2) in terms of the functions of {u\, u2) and (vi, v2), the sign 
being positive for even functions and negative for odd functions. 
Furthermore fa can be expressed rationally in terms of xa, 
y a, ta, y] a, and similarly t]a can be expressed rationally in terms 
of xa, ya, ta, f«. For the functions are connected by the relations 

* Appell et Goursat, Théorie des Fonctions Algébriques, Chap. 9. 
f Dixon, loc. cit. 
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(5) 

where 

ytrj2 

2yW 

ytp 

z 

t 

= ayt + xy + zl, 

= byt — y2 — t2 — xz, 

= cyt + yz + oct, 

2F(ai, a2) — 2pip2 

(« i — a 2 ) 2 

a n d 

2F(ai, a2) = «i2a2
2(«i + «2) + 2aax

2a2
2 

+ èaia 2 («i + «2) + 2caia2 + «1 + « 2 . 

W e see from these relat ions t h a t in te rchanging a wi th c and 3/ 
wi th / also in te rchanges rj wi th f. 

If we e l iminate 5 be tween (1) and (2) we get the equa t ion 

n0
2r6 + (2n0fti — m0

2)r5 + (^i2 + 2n0n2 — aw0
2)r4 

(6) + (2n1n2 + 2^0^3 — bm0
2)rs 

+ 0*22 + 2^i^3 — cm0
2)r2 + (2w2^3 — mtf)r + #3

2 = 0, 

whose roots are a i , «2, ft, ft, 71, 72. Hence we have 

xa xp xy mo2 — 2n0fii 
1 1 = > 

ta k h n02 

(7) 
y« y$ y y _ n# 
ta h h n02 

Since (pu, pi), (a2, p2), (ft, c i ) , (ft, <r2) are on L, we have 

ntopi = n0otiz + niai2 + n2ai + w3, 

WoP2 = ^0«23 + ^ l«2 2 + ^2«2 + W3, 
(8) 

Wo<ri = ^0ft3 + ^îft2 + n$i + nz, 

m0(r2 = n0Pi + n$2
2 + n2$2 + nz. 

F r o m (8) we get a t once 

Xa ta y a %a 
rjafno = — n0 + nx nz, f«w0 = n0 + n2 -\ nz, 

ta y a ta y a 
xp t$ y$ x$ 

npMo = — n0 + tii nZi f^w0 = n0 + n2 H n3. 
h y? h y? 
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If now we let no = tatppQ and ns=yaypps and write 

= (v> 1), e tc . , 
\ ya yp \ i vp i i 

we get 

(10) (t;, l)w0 = (a?, 0#o + (J, 0#s, (f, l)w0 = (*, y)^o + (*, y)*« • 

Writing 

Wo 

xa 

ya 

%p 

yp 
= 0, y), 

Va 

Vp 

1 

i 

(*, 0 (y, 0 

(*> y) 0> y) 
we have 

Po 
(v, 1) (y, 0 

(f, i) (*, y) 

From (9) we get 

Pz = 
0 , 0 (iy, 1) 

fcy) (M) 

(11) 
2»i = ra0(r?a + rid) + pz(yjp + ypta) - po(xJp + afck), 

2n2 = w0(fa + ft) + po(yJp + y?ta) - pz{ocayp + ^y«) 

It is interesting to note here that interchanging y with t, and v 
with f, interchanges £owith pZ} w0with n3f Wi with n2l and leaves 
m0 unaltered. 

If we substitute the value for 2tii from (11) in (7) we get 

(12) 

xy __ w0
2 - Uf}po[mo(Va + w) + psiyjfi + y^«)] 

y_j_ P£ y ay $ 

ty pQ*tah 

Since the points (yif n ) , (72, T2) are also on L we have 

)77w0 
* • » 

n0 + tii 
ty 

«8, f 7^0 = 
yr 

n0 + n2-\ w3. 
y? 

If now we let xa+^ etc. denote the same functions of (ui+vi, 
u2+v2) as xa etc. are of (wi, w2) and x̂  etc. are of (vi, #2), we have 
the following addition formulas (valid for distinct arguments) : 
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xy:yy:ty — xa+p.ya+fiita+p — \ 

(n,i) (y,0 IT, , , 

(f, i ) (X> y) I l > + * > 
(af, 0 (i,, 1) 

899 

+ (yjp + ypta) 
(t,y) ( M ) ]}-

(*, 0 (y, 0 
(/, y) (s, y) 

(*,*) (y,0 
(/, y) (x, y) 

&y) (f,i) 

0?,i) (y,0 '2 

Cf, i) (*, y) 

r/7 = — 7;a+/3 = 

yay/9Wj9 

UaW 

m0 po(xJfi + xrfa) po2tJp 

tjppo 2m0 mops 

Ps(yJfi + yrfa) Va + Vfi 

2mo 2 

__ _ m0 pz(xay(i + x0ya) Piyay^ 
f y - - fa+/3 - 7 — 

#o(y«//3 + y/3*a) fa + f 0 

2w0 2 

These last two equa t ions m a y be wr i t t en 

Wo potJp(C, 1 ) l?aya*/3 — W / ^ a 

(y,0 
wo p3yayp(r), 1) f«y^« - fry«fc 

i*Y — — f a+/3 — 1 ' 
yaypps po(t, y) (/, y) 

F r o m (12) we get 

xy _ Wo2 — tJpp0[tno(ya + tys) + pz(yjp + y^«)] 

y 7 yayptjppz2 

If now we in te rchange y wi th /, 77 wi th f and £ 0 wi th ps we get 

#7 _ wo2 — y«y^3[w0(fa + f/3) + My«^ + y^«)] 
ty yayptjppo2 

T h i s is exact ly t h e form obta ined for Xy/ty by using the coeffi­
c ient of r from (6) r a the r t h a n the coefficient of rh. A somewha t 
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more symmetrie though much longer form for xy/ty is obtained 
by taking one-half the sum of these two expressions. 

3. The Coincidence Case, Duplication Formulas. If (jSi, ai) 
coincides with («i, pi) and also (/32, <x2) coincides with (a2, p2), 
that is, if ui — vi and u2 = v2, the above formulas become inde­
terminate in the sense that they do not give the expressions for 
the functions of (2wi, 2u2) in terms of the functions of (#1, u2) 
simply by setting vx = Ui and v2 = u2. In order to obtain the 
formulas in this case as expeditiously as possible we determine 
the curve L so that it is tangent to H at each of the points 
(ai, pi) and (a2l p2). We then have by Abel's theorem 

2ui + Wi = 0 (mod period), 2u2 + ^ 2 = 0 (mod period). 

Since the roots of (6) are now «i, a\, a2, a2, jx, y2, we have 

xy mo2 — 2n0ni 2xa yy n£t£ 

ty nQ
2 ta ty n0

2y2 

where the ratios w0/m0) tii/nto, n2/nto, ns/nto are to be deter­
mined from the equations* 

(15) ytrinio = xyn0 + ytni — t2n3, ytÇnio = — y2n0 + yln2 + xtn^ 

(Sxy2 + 4ayH — 2cyt2 — xt2)m^ 

= 6(yH£ + xy2ri)n0 + 4;yafy»i - 2yt2Çn2) 

(Sys — 3byH — 2cxyt — xH + yt2)m0 

= 6ysrjn0 — 4y2t£ni — 2(xytÇ + yHr))n2. 

The computation here is greatly simplified by introducing the 
function z/t as defined in (5) which is expressed rationally in 
terms of x/t, y/t, rj, f through the relations given there. Making 
use of these relations and writing 

/«*N#°
 = ^ 2 - / 2 ^ + (*y - **K> P2 = t7]2 + z ^ + ^2> 

(16) 
#i = yv2 + xtf + 'f2, p, = (xt - yz)n + (t2 - y2)^ 

we get immediately 

^2 = y^o - %p9 + 2ytp£, nz = y£8. 

* Since there is no possibility of confusion the subscript a will be omitted 
in what is to follow. 
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If now x2a etc. denote the same functions of (2ui, 2u2) as xa etc. 
are of (ui, u2), and we substitute the expressions from (17) in 
(14), we get the following duplication formulas: 

xy:yy:ty = x2a:y2a:t2a = (^ytpip2 — 2pops):pz2:po2. 

Since the points (71, rx) and (72, r2) are on L, we have 

Xy J/y y y Xy 

rjyfno = — n0 + nx n3, f ym0 = n0 + n2 -\ n$. 
ty yy ty yy 

Hence we have 

[(tytpip* - 2popz)t - xpo2 }pz + poitp? - ypo2) 
1_ Vi 

2ytpQpipz 
[(±ytpip2 - 2p0p3)y - xpi ]p0 + P*(ypo2 - tpi) 

1. f} 
2ytpopips 

where p0, pi, p2, p3 are as defined in (16). 
For certain choices of (ai, pi) and (a2, p2) in the coincidence 

case, (71, TI) will coincide with (72, r2) and the curve L will be 
tangent to H at each of three points. In fact (ai, pi) can be 
chosen arbitrarily subject to the condition that pi^O and then 
(«21 P2) can be determined in a finite number of ways so that the 
curve L which is tangent to H at (ai} pi) and (a2, p2) will also be 
tangent at a third point. If we take a fixed point on H and de­
termine a curve L through this point and any three of the points 
where H meets the r-axis, this curve L will meet H in another 
pair of points such that the L which is tangent to H at each of 
these is also tangent at the given fixed point. Furthermore all 
such tangent curves may be obtained in this way.* 

MISSISSIPPI WOMAN'S COLLEGE 

* For proof of this statement see a paper by the writer in this Bulletin, vol. 
37 (1931), p.557. 


