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ADDITION FORMULAS FOR HYPERELLIPTIC
FUNCTIONS

BY W. V. PARKER

1. Introduction.* In a recent paper the writer{ discussed the
Kummer surface associated with the hyperelliptic curve of the
form

st=r+art+ b3+ cr2 4 r.

This form for the curve was used by A. L. Dixonf in a paper in
which he obtained addition formulas for hyperelliptic functions
with distinct arguments. Dixon emphasizes the unusual sym-
metry of this particular form for the hyperelliptic curve. In the
present paper duplication formulas are found as well as the
addition formulas for distinct arguments. The odd functions
used here differ from those of Dixon and are slightly different
from the ones ordinarily used. The particular form used here
seems desirable because of the symmetry.

2. Distinct Arguments. Consider the fixed hyperelliptic curve,
H, of genus two, given by the equation

(1) 2=+ art 4 b8 4 crt 4 7,
and let L be a variable curve of the form
2) mos = nor® + n1r? + ngr + ns, mo # 0.

If o520, H and L intersect in six finite points any four of which
are sufficient to determine L and hence to determine the
remaining two points.

Denote the six points of intersection of H and L by

(al’ Pl), (a.z, p2)’ (61; 01)) (627 0'2): ('Yly 71)) (72’ 7'2)7
and let

* This paper is a part of a dissertation written in Brown University, 1931.
The writer is indebted to A. A. Bennett for many helpful suggestions.

t This Bulletin, vol. 38 (1932), p. 403.

1 On hyperelliptic functions of genus two,Quarterly Journal of Mathematics,
vol. 36 (1904), p. 1.
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We then have by Abel’s Theorem*
u; + v, + w; = 0 (mod period),

4)
#2 + va + ws = 0 (mod period).
Let
Xa Va
— = a1 + a, — = aio,
be ba
Q2p1 — @1p2 alps — azsz
e = ) fa=————— :
araz(ar — as) (o — ag)

and denote similarly the corresponding expressions in (i, B,
g1, 02; Y1, Y2, T1, T2. These are all periodic functions of the inte-
grals #; and u,. We knowthat x,/¢,,and y./t.are even functionsf
and 7, and {, are odd functions. The functions x,/fy, ¥4/t 1y, v
can be expressed rationally in terms of X, Va, fay Mes $ar X8, Vg
tg, Mg, $a. But xy/ty, v4/ty, M4, & are the same functions of (w1, we)
as Xo/tay Ya/tay Nes Ca are of (uy, us) and xs/ts, vs/ts, 18, ¢s are of
(v1, v2), and since, from (4),

w = — (ul + 7)1):
and
wy = — (ug + v2),

these relations give us expressions for the functions of (#:+wvi,
#s+1;) in terms of the functions of (u1, #2) and (vy, v2), the sign
being positive for even functions and negative for odd functions.
Furthermore {, can be expressed rationally in terms of ¥a,
Yay bay Na, and similarly 7, can be expressed rationally in terms
of %4, Ya, ta, (o For the functions are connected by the relations

* Appell et Goursat, Théorie des Fonctions Algébriques, Chap. 9.
1 Dixon, loc. cit.
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ym? = ayt + xy + 2,

(5) 2ym¢
Vi

byt — y? — 12 — «xz,
cyt + vz 4+ «t,

Il

where
4 2F (a1, as) — 2p1ps

_ = y
t (Oll — a2)2

and
2F(a1, az) = Ot120t22 (Oél + 0(2) + 2(1«&120122

~+ bazas(as 4 as) + 2conas + a1 + as.

We see from these relations that interchanging ¢ with ¢ and y
with ¢ also interchanges # with ¢.
If we eliminate s between (1) and (2) we get the equation
n@rS + Q2uony — m)r® + (nd + 2nony — ame? )r
(6) + (2%171/2 + 2’”/0”3 - bMQ2)73
+ (n22 + 2%1%3 - cm02)7'2 + (2”2”3 - ’WZQZ)?’ + 71«32 = 0,

whose roots are oy, az, B1, Bs, 1, v2. Hence we have

Xo  Xg Xy Mg — 2memy
DA AT S
a B v 0
(1)
Ya Y8 Yy 73

Since (ai, p1), (@2, p2), (B1, 01), (Bz, 02) are on L, we have

mop1 = moa® + ma? + oy + 3,
mope = Mool + mia? + naaz + s,
nmoB? + miB? + nafi + ns,
noBs® + niB? + 1B + ns.

From (8) we get at once

®)

Il

Mmoo 1

Mmoo 2

%o la Ya 28
Nato = — Mo + M1 — — n3, {amo = — — Mo + Ny + — ng,
ta ya ta ya
)
xg ls Vs xg
ngmo = -— g + ny — — ng, {gmo = — —— Mo + N2 + — n.

ts Vs 7 87
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If now we let no=1lusp0 and 73 =7y,ysp; and write

Xa X8
Ya V8

Na

1
= (x’ y): 1 ‘ = (n, 1)7 etc.,

we get

(10) (’7) 1)m0 = (x) t)PO + (y) l)Pii) (g‘y l)mo = (t: y)Po + (x: y)P3 .
Writing

(=0 (0
moy = ,
¢y (x,9)
we have
_| ) () _| @) @1
Tl @l ¢,y &l

From (9) we get

201 = mo(na + ng) + ps(Yals + Yota) — po(wals + %sta),
2ny = mo(Sa + g‘ﬁ) + f’o(yatﬁ + yﬁta) - P3(xayﬁ + xﬂya)

11

It is interesting to note here that interchanging y with ¢, and 7
with ¢, interchanges p, with p3, nowith n;, #; with #,, and leaves
mo unaltered.

If we substitute the value for 2%, from (11) in (7) we get

Xy me — talspo[mo(na + ns) + Ps(Vals + Vsta) ]

= )

t ta2¢,32P02
(12)

Vv _ D3 Yads

1y D tals

Since the points (v1,71), (v2, 72) are also on L we have

Xy Iy Vv Xy
NyMo = —— g + Ny — — N3,  § My = — — Ny + Ny + — n3.
v Vv v Vv

If now we let x.45 etc. denote the same functions of (#;+ws,
us+1vs) as x, etc. are of (u1, #s) and xg etc. are of (vy, v3), we have
the following addition formulas (valid for distinct arguments):
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(8 1)
&y (%9

2

Xyt Yyily = Xarp Yot latp = {~

(n, 1) (9,0 (x,8) (9,1
— lalpg (ﬂa + 7753)
(13) &1 (%9 ) (x,9)
(x,8) (n,1) ]} (x,8) (,1) |2
+ (Yalsg + Vot *YaVplal
st 380y ey PP ) )
RRCERC N
eba VB b}
1) (%9
_ _ Mo _ Po(xatﬁ + x,gta) _ j)o2lfatﬁ
Ny Na+p tulspo 2me Mops
_ P3(yatﬁ + yﬂta) _ Na + ns
27}10 2
fr = — farg = mo  pa(%ays + %8Ya) D8 Yads
! e YVaYpD3 2my MoPo
_ po(Vals + Vsta) _ $a+ s )
21%0 2

These last two equations may be written

mo Potatps($, 1) Madals — NsYsta
- )

T T be | (3, 0) », )
mo  p3Yays(n, 1) {aYsta — $8Yals
{y= —$ats = - .
YaYsPs polt, ¥) @ )

From (12) we get
%y mi — latgpo[mo(na + 15) + ps(yals + Yata))

Y YaYplalsps®
If now we interchange y with ¢, 5 with ¢ and p, with p; we get

Xy Mgt — yaya;bs[mo(?a + ¢8) + Po(yals + yﬁta)]

2 yayﬁtatﬂP(l?

This is exactly the form obtained for x,/f, by using the coeffi-
cient of » from (6) rather than the coefficient of #°. A somewhat




900 W. V. PARKER [December,

more symmetric though much longer form for «x,/f, is obtained
by taking one-half the sum of these two expressions.

3. The Coincidence Case, Duplication Formulas. If (8., o1)
coincides with (e, p1) and also (B, o2) coincides with (s, p2),
that is, if #;=v; and uy;=v,, the above formulas become inde-
terminate in the sense that they do not give the expressions for
the functions of (2u;, 2us) in terms of the functions of (ui, us)
simply by setting v1=u; and v,=u,. In order to obtain the
formulas in this case as expeditiously as possible we determine
the curve L so that it is tangent to H at each of the points
(o1, p1) and (g, p2). We then have by Abel’s theorem

2u; + w; = 0 (mod period), 2u#s + w2 = 0 (mod period).
Since the roots of (6) are now o, o, o, o2, Y1, ¥2, we have
Xy me? — 2mon,y 2% Yy Nns? b2

(14) A A

v e ta by  mdyd

)

where the ratios n/mq, n1/mo, ns/mo, ns/m, are to be deter-
mined from the equations*

(15) yinmo = xyne + ying — 2ns, yime = — y*ng + ying + xins,
(Sxy? + day¥ — 2cy1* — xt¥)my

= 6(y¥ + xy*n)me + 4y¥nny — 2y%n,,
(5y® — 3by% — 2cxyt — x% + yt¥)ymy

= 6y*ne — 4y¥in, — 2(xyie + yim)na.

The computation here is greatly simplified by introducing the
function 2/t as defined in (5) which is expressed rationally in
terms of x/t, y/t, 5, { through the relations given there. Making
use of these relations and writing

= (" = )+ (xy — 208, pa
yn? + ang + 12, b3
we get immediately

mo = 2yip1, Mo = tho, my = ips — xpo + 2yipm,
Ny = ypo — x%ps + 2yipil, ns = Yps.

* Since there is no possibility of confusion the subscript a will be omitted
in what is to follow.

m? + ¢ + &2,
(xt — yz)n + (22 — y3)g,

16

1

Il
Il

(17)




1932.] HYPERELLIPTIC FUNCTIONS 901

If now x. etc. denote the same functions of (2u1, 2u,) as x, etc.
are of (u1, us), and we substitute the expressions from (17) in
(14), we get the following duplication formulas:

x-,:y.,:t., = xga:yza:tza = (4ylfj)1pg - 2?0?3)2?32 :P()Z .

Since the points (yi, 71) and (s, 75) are on L, we have

13
NyMg = ﬁ”ﬂ"l‘”l ——y'ﬂa, oo = — 2,1”0‘1'"2-|"9ﬁ"%3.
7 Yo ¥ Yy
Hence we have
[(4ytpipa — 2pops)t — xpd® 1ps + po(tps — ype?)
Ny = — Moo = +n,
2ytpop1ps
t = pa = (010 200p)y — 5p8 Ipok il — 0p2) |
2yipoprps

where pq, p1, b2, s are as defined in (16).

For certain choices of (a, p1) and (ae, ps) in the coincidence
case, (y1,71) will coincide with (vy,, 72) and the curve L will be
tangent to H at each of three points. In fact (au, p1) can be
chosen arbitrarily subject to the condition that p;0 and then
(cts, p2) can be determined in a finite number of ways so that the
curve L which is tangent to H at (a4, p1) and (o, p2) will also be
tangent at a third point. If we take a fixed point on H and de-
termine a curve L through this point and any three of the points
where H meets the r-axis, this curve L will meet H in another
pair of points such that the L which is tangent to H at each of
these is also tangent at the given fixed point. Furthermore all
such tangent curves may be obtained in this way.*

Mississippt WoMAN's COLLEGE

* For proof of this statement see a paper by the writer in this Bulletin, vol.
37 (1931), p.557.



