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T H E CHARACTERISTIC ROOTS OF A MATRIX* 

BY E. T. BROWNE 

1. Introduction. If A is a square matrix of order n and I 
is the unit matrix, the equation in X obtained by equating to 
zero the determinant \A— \l\ is called the characteristic equa­
tion of A. The roots of this equation are called the character­
istic roots of A. Although it is not possible to make any definite 
statement as to the nature of the characteristic roots of the 
general algebraic matrix A, several authors have given upper 
limits to the roots. The first upper limit seems to have been 
given by Bendixsonf in 1900. 

Let us denote by Af and A the transpose and the conjugate 
imaginary, respectively, of the square matrix A. If we write 

A+T A-T 

it is obvious that B'= B so that B is Hermitian (or real sym­
metric if A is real). Similarly, Cis Hermitian (or skew-symmetric 
if A is real). Bendixson's theorem then is as follows: 

BENDIXSON'S THEOREM, (a) If a+if3 is a characteristic root 
of a real matrix A and if pi^p2 ^ • • • ^pn are the characteristic 
roots (all real) of the symmetric matrix B = (A ~\-A')/2, then 

(1) Pl è « â Pn. 

(b) If gn is the greatest of the numerical values of the elements 
\(aij — aji)/2\ of the real skew-symmetric matrix (A—A')/2, 

then 

(2) |/3 | ikg"[n{n- l ) / 2 ] " 2 . 

The extension to the case where the elements of A are complex 
was made in 1902 by Hirschf who proved the following theorem : 

* Presented to the Society, September 11, 1930. 
t Bendixson, Sur les racines à1 une équation fondamentale, Acta Mathe­

matica, vol. 25 (1902), pp. 359-365. 
î Hirsch, Acta Mathematica, vol. 25 (1902), pp. 367-370. 
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HIRSCH'S THEOREM, (a) If a+i/3 is a characteristic root of 
any square matrix A and if we designate by g the greatest of \a.i3- | ,* 
by g' the greatest of |(at-?-+â/i)/2 |, and by gn the greatest of 
\(dij-— a.ji)/2 |, then always 

(3) | a + ifi | ^ ng, 

(4) | a | ^ ng', 

(5) \P\£ ng". 

(b) If pi is //ze greatest and pn the least {algebraically) of the 
characteristic roots of B ~ {A +A ')/2, then always 

(10 Pi è a ^ Pn. 

In 1904 Bromwichf gave a proof of Hirsch's Theorem (a) and 
(b) and further extended (b) as follows: 

BROMWICH'S THEOREM. If a+i/3 is a characteristic root of a 
matrix A and if we denote by ±/xi, • • •, ± \xv (2v^n) the non­
zero characteristic roots of the matrix C—(A—A')/(2i), then |/3 | 
cannot exceed the greatest of the | /x; |. 

In 1922, for a real matrix A, Pickf gave a proof of Bendix-
son's Theorem (a) with Bromwich's extension and he showed 
that (2) can be replaced by |/3 | =gtr |ctn ir/(2n) | which in general 
gives a more restricted limit than (2). 

In 1927 the author § attacked the problem from a different 
angle and proved the following theorem: 

If X is a characteristic root of a square matrix A and if 
pi^p2^ • • 'z^Pn are the characteristic roots (all ^ 0 ) of AA', 
then pi^XX^Pn-

It is the purpose of this paper to show by a very simple 
method that Hirsch's limits (3), (4) and (5) may be replaced 

* Here \An | denotes not the determinant of the matrix A but the absolute 
value of the number An, 

t Bromwich, On the roots of the characteristic equation of a linear substitu­
tion, Acta Mathematica, vol. 30 (1906), pp. 295-304. 

Î Pick, Über die Wurzeln der charakteristischen Gleichung von Schwing-
ungsproblemen, Zeitschrift fur angewandte Mathematik und Mechanik, vol. 
2 (1922), pp. 353-357. 

§ The characteristic equation of a matrix, this Bulletin, vol. 34 (1928), pp. 
363-368. 
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by limits which never exceed the former and are in general 
more restricted. 

2. The Characteristic Roots of A A'. HA is any square 
matrix, real or complex, Autonne* has shown that there exist 
two unitary (real orthogonal, if A is real) matrices P , Q such that 

(6) A = P'NQ 

where N has real positive (or zero) numbers in the main di­
agonal and zeros elsewhere. On forming the product A A' 
= P'N2P it becomes evident that the numbers in the diagonal 
of N are the positive (or zero) square roots pi1/2, • • •, pn

1/2 of 
the characteristic roots of A A '. From (6), N = PAQ', so that 
if we denote by pa, tin and qa the element in the ith row and 
the jth column of P , N and Q, respectively, we have 

\1 ) Mij ~ / jPir&rsQis « 
r ,s 

That is, the elements of N are of the form X *'i' aaxiyj where 
(xi, • • • ,xn) and (yi, • • • ,yn) are sets of numbers such that 
/ .i^iXi=/ jjy%yi^ i • 

3. An Upper Limit to the Roots of A. Let us denote by rji and 
fi the absolute values of x% and y^ respectively. Then the sets 
(yi, • ' ' > Vn) and (fi, • • •, fn) are real sets such that YjVi2 =X)f *2 

= 1. Since rji and f* are real 

(8) mïiÛîM + t f ) . 
Hence 

|»« I = I ^aaxiyj | ^ X) I aa I I xi I I yi I 

= X)I Ö»J I rati < i X I öi,-1 (v? + f ? ) . 

If 5i denotes the sum of the absolute values of the elements in 
the ith row of A and if S is the greatest of the Si} we have 

* Autonne, Sur les matrices hy•/ohermitiennes et les unitaires, Comptes 
Rendus, vol. 156 (1913), pp. 858-860, in which the theorem is given without 
proof. In fact the theorem follows as a consequence of the author's Theorem 
IV on p. 367 of the aforementioned paper. See also Taber, On the linear trans­
formations between two quadrics, Proceedings of the London Mathematical 
Society, vol. 24 (1892-93), pp. 290-306, in which the theorem for A real and 
non-singular is contained implicitly. 
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(9) X) I <*u I Vi2 = Jlvi Z ) I aa I = Z)^i 2 ^i = 5 Hi? = 5 -
•i, i i i i 

Similarly, if Ti denotes the sum of the absolute values of the 
elements in the ith column of A and if T is the greatest of 
the Tu 

£ | a < / l * 7 ^ T. 

Hence 

| » « | = Pim ^ (S + T)/2. 

Now from the author's theorem as quoted earlier in the paper, 
if X is a characteristic root of A and M is the greatest of the 
p's, then 

| X | ^ M112. 

Hence 

|X | ^ ( 5 + T)/2. 

We therefore have the following theorem: 

THEOREM. If Si (Ti) is the sum of the absolute values of the 
elements in the ith row (column) of a square matrix A and if S (T) 
is the greatest of the Si (Ti), the absolute value |X | of a charac­
teristic root X of A cannot exceed (S+T)/2. 

Equation (3) of Hirsch's Theorem (a) obviously follows as a 
corollary to this theorem. It is clear that the limit given by the 
latter can never exceed that given by Hirsch's criterion and is 
in general less. 

The limit is sometimes actually attained, for example, if A 
is a matrix each of whose elements is the square of the corre­
sponding element of a real orthogonal matrix. In this case A 
obviously has the characteristic root + 1 . Moreover, the limit 
is always attained if A is a circulant, (that is, aij = aj-i+i, for i^j; 
aij = an+j-i+i for i>j) whose elements are real and ^ 0 . 

In particular, if A is Hermitian, Si—Tz and hence S=T, 
so that we have the following corollary. 

COROLLARY 1. If Si is the sum of the absolute values of the 
elements in the ith row of an Hermitian matrix A, and if S is the 
greatest of the Si, the numerical value of a characteristic root X of 
A cannot exceed S. 
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The limit given in the corollary is evidently attained if A 
consists entirely of zeros except in the diagonal. It is also at­
tained if A is a real cyclic matrix, (that is, aij = ak where k is 
the least positive residue of i+j—1, mod n) with positive or 
zero elements. 

On making use of Hirsch's Theorem (b) we have also the 
following corollary. 

COROLLARY 2. If a+i/3 is a characteristic root of A and if S/ 
is the sum of the absolute values of the elements in the jth row of 
the Hermitian matrix B — (A-\-A')/2, then if S' is the greatest 
of the S/, it follows that \a \ ^S'. 

Equation (4) of Hirsch's Theorem follows directly from this 
corollary. Moreover, it is clear that our criterion usually gives 
a narrower limit than that of Hirsch. 

By invoking Bromwich's Theorem we can state also the fol­
lowing corollary. 

COROLLARY 3. If a+ift is a characteristic root of A and if S/' 
is the sum of the absolute values of the elements in the jth row of 
the Hermitian matrix C= (A —Ar)/(2i), then if Sn is the greatest 
of the S/', we have \j3 | ^S". 

Equation (5) of Hirsch's Theorem (a) follows directly from 
this corollary. Corollaries 2 and 3, which have been deduced 
from our theorem, might have been proved directly without 
invoking Autonne's theorem. For if we write, as in §1, B — 
{A +2"0 /2 , C= (A -1f)/{2i), it is clear that A =B+iC where B 
and C are Hermitian matrices. Suppose now that a-\-i/3 is a 
characteristic root of A. Then there exists a set (xi, • • • , xn) 
^ (0, • • •, 0), and which we may suppose to have been divided 
through by the proper non-vanishing factor so that ^XiXi=l, 
such that 

^2atjXj = ^btjXj + i ^CtjXj = (a + i$)xt it = 1, • • • , n). 
i i i 

On multiplying these equations through by xt and summing 
as to t, we have 

(10) ^btjXtXj + i ^CtjXtXj = X)(a + i(3)xtxt = a + if3. 
t,j t,j t 
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Now since B and C are Hermitian matrices each of the summa­
tions on the left is real. Hence, equating real and imaginary 
parts in (10) we have* 

^" ' J 'ii%i%'it 
i*3 

P ' / jCi i%'i% i » 

i,j 

If now we denote by rji the absolute value of Xi and proceed 
as in (9), Corollaries 2 and 3 follow at once. 

THE UNIVERSITY OF NORTH CAROLINA 

ON T H E REDUCTION OF T H E I N D E F I N I T E 
BINARY QUADRATIC FORMSf 

BY J. V. USPENSKY 

The reduction theory of the indefinite binary forms has been 
presented in widely different forms and from various points of 
view. But whatever point of view is adopted, it seems that 
Hermite's principle of continuous variables under more or less 
disguised form constitutes an essential foundation of all the 
existing theories of reduction. 

Hermite's principle in its simplest aspect consists in associ­
ation with a given indefinite form of a positive quadratic form 
containing a continuously varying positive parameter and the 
study of integral values of variables which give successive 
minima of the latter. However, the reduced forms in Hermite's 
theory differ from those in the classical Gaussian theory of re­
duction. A little contribution to the theory of reduction which 
this article contains has for its purpose to show how, by sub­
stituting for Hermite's positive quadratic form a certain non-
homogeneous function containing a variable positive para­
meter, we obtain precisely the Gaussian reduced forms. 

Let 
£ = ax + fiy, rj = yx + 8y 

* See Hirsch, loc. cit., p. 369. 
f Presented to the Society, April 5, 1930. 


