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equation of a matrix has the same roots as its minimum equa­
tion and, when the latter is irreducible, the former is an exact 
power of the latter. But for all values of the & in F the quanti­
ties x—^^Ui are in a division algebra and have irreducible 
minimum equation. Hence R(o>] £1, • • • , em)=0 is either 
irreducible in F when the & take on values in F or is a power 
of an irreducible equation and is irreducible when it has no 
multiple roots. But the discriminant D(£i, • • • , £m) of 2?(co; £»•) 
is not identically zero, since R(co', &) is irreducible in 
F(£u • • • , ?m). Hence* there exists an infinity of values of the 
£t in F for which D^O and i£ = 0, of degree n, is the minimum 
equation of the corresponding quantities x. 

The proof of Hubert 's theorem is non-algebraic and even for 
fields of algebraic numbers it would be desirable to have an 
algebraic proof of our important theorem on normal division 
algebras. The above furnishes such a proof, f 
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In a recent paper N. H. McCoy J has developed general com­
mutation rules for the algebra of the quantum mechanics of 
Born, Heisenberg and Jordan. It is the purpose of this note to 
point out a commutation rule which in part is implicit in 
McCoy's work. 

The fundamental equation of quantum mechanics from which 
the algebra is developed is 

* See Fricke, Algebra, vol. I, p. 96, for a rational proof of this result which 
holds for any non-modular field F. 

f The author wishes to take this opportunity to announce a correction of 
the results of his two papers in this Bulletin, vol. 35 (1929), pp. 335-338, and 
in the Proceedings of the National Academy of Sciences, vol. 15 (1929), 
pp. 372-376, respectively. In both of these papers the Hubert theorem was 
used and the results of these papers are correct only for fields for which a 
Hubert irreducibility theorem is provable. In the statement of Hubert 's theorem 
in the paper in this Bulletin, the reading should be UK any algebraic field over 
R, the field of all rational numbers," instead of UK any infinite field." 

X Algebra of quantum mechanics, Transactions of this Society, vol. 31 
(1929), pp. 793-806. 
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(1) pq - qp = ci, 

in which the elements p, q are interpreted as matrices or as non-
commutative operators which multiply associatively. / is the 
identity and c a number, real or complex, but not zero. Unique 
inverse elements are assumed to exist and are written q~l, p~l. 
This assumption is not fulfilled for all elements p, q satisfying 
equation (1), but by restricting exponents to positive values 
the results obtained are valid independent of the interpretation 
placed on p, q. 

The result to be proved may be stated as follows : 

(2) (piqi)m(p3'q1')n(qkpk)r(qlpl)s = (qlpl)s(qhpk)r(pjqj)n{piqi)m > 

i,j,k,l,m,n,r,s = 0, ± 1, + 2, • • • . 

By specializing the exponents it is seen that any pair of the 
terms (£V)m> (£¥)"> (qkPkY, (qlPl)s commute. 

PROOF. Since pq = qp + cl, we have 

(3) (pq)(qp) = (qp)(pq), ( r V ' X ^ r 1 ) = ( f W l f V 1 ) . 

Let us set f = pqp~1q~1> Then 

fy-ip-i = (pq) (/r-ig-i) (q-'p-1) = (Pq) ( ( T ^ 1 ) {p^q'1) = P~lq~\ 

whence 

f=(p-1q~1) (r'p-1)-1-^-1*-1) (Pq)-
It follows that 

(4) (pq)(P~1q-1) = (p-'q-'Kpq), (qp)(q-1P~1) = (q-'P^iqp). 

If G and H are functions of p, q commuting with pq, qp, q~lp~l, 
p~lq~l, GH commutes with pq, qp, q~lp~l, P~lq~l- Since (pq)~n 

= {q~lp~l)n and {p~lq~l)~n = (qp)n we find from (3) and (4) that 

(5) (pq)m(qp)n = (qp)n(pq)m, (n,m = 0, ± 1, ± 2, • • • ) • 

To complete the proof we show that 

n n 

(6) p«q» =. !>*»(#?)'» qnpn = Y.bUqpy, 

where n = 0, 1, 2, • • • , and the coefficients a»n, bin are numbers. 
p2q2 = P(Pq)q = P(qP + cI)q=(pq.+d)pq. 

It follows by induction that 
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pngn = (pq+Çn- l ) c7 )^ -V" 1 » qnpn = (qp-{n- \)cl)qn-xpn~x, 

w = 0, 1, 2, • • • , from which (6) is readily proved. Then, by 
(5), we have 

(pnqn)(pmqm) = (pmqm)(pnqn), 

(7) (p«qn)(qmpm) = (qmpm)(p-qn), 

(qnpn)(qmpm) = (qmpm)(qnpn), (m, n = 0, 1, 2, • • • ) . 

From (7) we obtain 

(q-mp-m)(q-~np~n) = {q~np~n){q-mp~m)1 

(q-mp-m)(pnqn) = (pnqn)(q-mp-m) , 

and four similar equations. Therefore (7) is true for w, w = 0, 
± 1 , ± 2 , • • • , and since (piqi)~n=(q~ip~i)n we have the result 
which was to be proved : 

(PY)m(piq]')n = (pJ'q3')n(piqi)m, 

(piqi)m(q1'Pj)n = (q3'Pj)n(PY)my 

(qipi)"(q>'p>y = (q^pOn(qipi)m
) (i,j,m, » = 0, ± 1, ± 2, • • • )• 

By specializing a general identity McCoy finds 

qmpm'qnpn' = qn'pnqm'pm^ m + n=m' + ri # 

To illustrate the use of the theorem we verify this identity: 

qmpm'qnpn' _- (^mpm) ^m'-m^m'-m^^n'pn'^ 

= (nn' pn'\(bm'~mqm'—m\(qmfomS) = qn' <hnqm' j)m. 

Tf inverses do not exist and m'<m 

qmj)m' qnhn' = qm—m' („m' jjm'\{gn,pn\j)n'--n 

— qm—m'fgnfin\('Qni'jjm'\fin'--n — qn'hnqm' j)m . 
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